
Rectilinear Block Placement Using B*-Trees �

Guang-Ming Wu, Yun-Chih Chang, and Yao-Wen Chang
Department of Computer and Information Science, National Chiao Tung University, Hsinchu 300, Taiwan

Abstract
Due to the layout complexity in deep sub-micron technology, in-

tegrated circuit blocks are often not rectangular. However, literature
on general rectilinear block placement is still quite limited. In this pa-
per, we present approaches for handling the placement for arbitrarily
shaped rectilinear blocks, based on a newly developed data structure
called B*-trees [1]. Experimental results show that our algorithm
achieves optimal or near optimal block placement for benchmarks
with multiple shaped blocks.

1 Introduction
Due to the growth in design complexity, circuit size is getting

larger. To cope with the increasing design complexity, hierarchical
design and IP modules are widely used. This trend makes block floor-
planning/placement much more critical to the quality of a design.

Floorplans can be divided into two categories, the slicing struc-
ture [13, 17] and the non-slicing structure [1, 2, 8, 11, 16]. A slic-
ing structure can be represented by a binary tree whose leaves de-
note modules, and internal nodes specify horizontal or vertical cut
lines. Wong and Liu proposed an algorithm for slicing floorplan de-
sign [17]. They presented a normalized Polish expression to repre-
sent a slicing structure, enabling the speed-up of the search proce-
dure. However, this representation cannot handle non-slicing floor-
plans. Recently, researchers have proposed several representations
for non-slicing floorplans, such as sequence pair [8], bounded slicing
grid (BSG) [11], O-tree [2], and B*-tree [1].

In deep sub-micron technology, the blocks are often not rectan-
gular. Most existing floorplanning/placement algorithms only deal
with rectangles and cannot apply to arbitrarily shaped rectilinear
block placement directly. New approaches which can handle arbi-
trary shaped blocks are essential to optimize area utilization.

Preas et al. in [14] proposed a graph model for the topologi-
cal relationship among rectangular and arbitrarily shaped rectilinear
blocks. Wong and Liu in [18] extended the Polish expression to rep-
resent slicing floorplans with rectangular and L-shaped blocks. Lee
in [7] extended the zone refinement technique to rectilinear blocks. A
bounded 2D contour searching algorithm is proposed to find the best
position for a block.

Kang and Dai in [4] proposed a BSG-based method to solve the
packing of rectangular, L-shaped, T-shaped, and soft blocks. The
algorithm combines simulated annealing and a genetic algorithm for
general non-slicing floorplans.

Xu, Guo, and Cheng in [19] presented an approach extending
the sequence-pair approach for rectangular block placement to ar-
bitrarily sized and shaped rectilinear blocks. The properties of L-
shaped blocks are examined first, and then arbitrarily shaped rectilin-
ear blocks are decomposed into a set of L-shaped blocks.

Kang and Dai in [5] proposed a method based on the sequence-
pair structure for the rectilinear block placement. Three necessary
and sufficient conditions for a sequence pair to be feasible are de-
rived. A stochastic search is applied on the optimization of convex
block floorplanning.

Chang et al. recently proposed the B*-tree representation for non-
slicing floorplans in [1], which is based on block compaction and
ordered binary trees. Inheriting from the nice properties of ordered

�This work was partially supported by the National Science Council
of Taiwan under Grant No. NSC-89-2215-E-009-055. E-mail: fgis85815,
gis87512, ywchangg@cis.nctu.edu.tw.

binary trees, B*-trees are very easy for implementation and require
only constant time for tree search and insertion, and linear time for
deletion. Unlike the sequence pair, BSG, and O-tree representations,
in particular, no extra encoding (except the tree itself) is needed for a
B*-tree, and cost evaluation can be performed on a B*-tree directly.
Besides, the ordered property of a B*-tree makes the incremental cost
evaluation of its corresponding placement possible. Further, given
a B*-tree, it takes only linear time to construct the placement, and
vice versa. All these nice properties make the B*-trees an efficient
and flexible representation for non-slicing floorplans. Empirical re-
sults show that the B*-tree representation is about 4.5 times faster
and consumes about 60% less memory than the O-tree one [1].

In this paper, we extend the B*-tree approach to arbitrarily shaped
rectilinear blocks. First, we explore the properties of L-shaped blocks
and then extend the properties to general rectilinear blocks. We con-
struct a set of benchmarks with rectangular and L-shaped (and T-
shaped) blocks and apply simulated annealing as a vehicle to test the
effectiveness of our approaches. Experiment results show that our
approaches lead to placements with optimal or near optimal area uti-
lization.

The remainder of this paper is organized as follows. Section 2
formulates the rectilinear block placement problem. Section 3 intro-
duces the B*-tree representation. Section 4 describes the method for
the L-shaped blocks in a B*-tree. Section 5 describes our algorithm.
Section 6 extends the algorithm to arbitrary rectilinear blocks. Exper-
imental results are reported in Section 7. Finally, we give conclusions
in Section 8.

2 Formulation
Let B � fb�� b�� � � � � bng denote a set of rectilinear blocks. A

block is not flexible in its shape but free to rotate and flip. A packing
of a set of blocks is a non-overlapping placement of the blocks.

A rectilinear block can be represented by four profile sequences,
namely the top profile sequence, the bottom profile sequence, the left
profile sequence, and the right profile sequence, specifying the pro-
files viewed from the top side, the bottom side, the left side, and
the right side of the block, respectively. The top (bottom) profile se-
quence of a rectilinear block uses the leftmost horizontal segment
on the top (bottom) boundary of the block as a base and records
the length of the succeeding horizontal segments on the top (bot-
tom) boundary and the relative height. Specifically, the top profile
sequence that is composed of the length of the base, followed by a
sequence of two-tuples composed of the lengths of the succeeding
horizontal segments and their relative heights to the base (could be
negative). For example, Figure 1 shows a rectilinear block with the
top profile sequence (4, [5, 7], [7, 4], [6, -1], [8, 4]). The base of the
sequence is segment a which has the length of 4 units. The second
horizontal segment is c which has the length of 5 units and is 7 units
higher than the base a. Similarly, the third horizontal segment is e
which has the length of 7 units and is 4 units higher than the base a,
and so on. The other three profile sequences are similarly defined.

Definition 1 A rectilinear block placement is feasible if and only if
no two blocks overlap with each other, and all profile sequences re-
main unchanged after placement (i.e., all blocks keep their original
shapes).

The goal of the rectilinear placement problem is to minimize the area

1



4
7

5

3 7

6
5

8

5

a

b

c d

e
f

g

h

i
Top profile sequence = 
(4, [5, 7], [7, 4], [6, −1], [8, 4])

base

Figure 1: The top profile sequence consists of the length of the base,
followed by a sequence of two-tuples that is composed of the lengths
of the succeeding horizontal segments and their relative heights to the
base.

induced by the assignment of bi’s, where area is measured by the final
enclosing rectangle of B.

3 Overview of the B*-Tree Representation
Given an admissible placement P , we can represent it by a unique

(horizontal) B*-tree [1] T . (See Figure 2(b) for the B*-tree repre-
senting the placement shown in Figure 2(a).) A B*-tree is an ordered
binary tree whose root corresponds to the module on the bottom-left
corner. Similar to the DFS procedure, we construct the B*-tree T for
an admissible placement P in a recursive fashion: Starting from the
root, we first recursively construct the left subtree and then the right
subtree. Let Ri denote the set of modules located on the right-hand
side and adjacent to bi. The left child of the node ni corresponds
to the lowest module in Ri that is unvisited. The right child of ni
represents the module located above and visible from bi, with its x-
coordinate equal to that of bi and its y-coordinate less than that of the
top boundary of the module on the left-hand side and adjacent to bi,
if any.

(a)

0

1b b

b

b
b

b b
b

(0, 0) x

y

2

3

4

5

6

b7

8

0

1

2 3

6

7

8

(b)

n

4n

n5n

n n

n

n

n

Figure 2: An admissible placement and its corresponding B*-tree.

As shown in Figure 2, we make n� the root of T since b� is on the
bottom-left corner. Constructing the left subtree of n� recursively,
we make n� the left child of n�. Since the left child of n� does
not exist, we then construct the right subtree of n� (which is rooted
by n�). The construction is recursively performed in the DFS order.
After completing the left subtree of n�, the same procedure applies
to the right subtree of n�. Figure 2(b) illustrates the resulting B*-tree
for the placement shown in Figure 2(a). The construction takes only
linear time.

The B*-tree keeps the geometric relationship between two mod-
ules as follows. If node nj is the left child of node ni, module bj

must be located on the right-hand side and adjacent to module bi in
the admissible placement; i.e., xj � xi � wi. Besides, if node nj
is the right child of ni, module bj must be located above and visible
from module bi, with the x-coordinate of bj equal to that of bi; i.e.,
xj � xi. Also, since the root of T represents the bottom-left mod-
ule, the x- and y-coordinates of the module associated with the root
�xroot� yroot� � ��� ��.

A contour structure (see Figure 3), which is originally proposed
in [2], can be used to reduce the run time of finding the y-coordinate
of a newly inserted block. The contour structure is a double linked list
of blocks, which describes the contour line in the current compaction
direction. Without the contour structure, the run time for placing a
new block is linear to the number of blocks. By maintaining the con-
tour structure, however, the y-coordinate of a block can be computed
in O��� time. Figure 3 illustrates how to update the contour when we
add a new block to the placement.

0b

newly added block

b1 b 2

b3

b4 b 5

b6

old contour
new contour

Figure 3: A contour and its update: when adding a new block to
the placement, we search the contour from left to right and update it
with the top boundary of the new block.

4 L-shaped Blocks
In this section, we apply the B*-tree approach to find a feasible

placement with L-shaped blocks. Let bL denote an L-shaped block.
bL can be partitioned into two rectangular sub-blocks by slicing bL
along its middle vertical boundary. As shown in Figure 4(a), b� and
b� are the sub-blocks of bL, and we say b�� b� � bL.

b 1b 1

b 1

b 1

b 1
b 1

b 1

b 1

b 2 b 2

b 2

b 2

b 2

b 2

b 2

b 2

(e) (e) (e) (e)

(e)(e)(e)(e)

Figure 4: Eight situations of an L-shaped block. Each is partitioned
into two parts by slicing it along the middle vertical boundary.

After partitioning and placement, the rectilinear block bL might



not conform to its top profile sequence, as illustrated in Figure 5.
Figure 5(a) shows a B*-tree and its corresponding placement. We
can pull sub-block b� up to align with the sub-block b�, so that the
block bL can maintain its top profile sequence without changing the
overall topology of the blocks. Oppositely, there might not be enough
space to do so; see Figure 5(b) for such an example. It is obvious
that a feasible placement can be generated from the B*-tree shown in
Figure 5(a) with a local adjustment, but it is impossible for the case
shown in Figure 5(b). Therefore, if we represent an L-shaped block
by two sub-blocks, we must guarantee that the two sub-blocks abut.
To ensure that the left sub-block b� and the right sub-block b� of an
L-shaped block bL abut, we impose the following location constraint
(LC for short) for b� and b�:

LC: Keep b� as b�’s left child in the B*-tree.

The LC relation ensures that the x-coordinate of the left boundary of
b� is equal to that of the right boundary of b�. For example, the two
sets of sub-blocks b�� b� and b�� b� shown in Figure 6(a) do not abut
while those shown in Figure 6(b) do. In Figure 6(b), the sub-blocks
b� and b� are placed at the right locations while the sub-blocks b� and
b� are not since the y-coordinates of b� and b� are not equal. We say
b� and b� are mis-aligned.

(a)

b1

b1

b2
b2

bj

(b)

b1b1

b2
b2

bj

bj

bj

Figure 5: Placing the L-shaped block shown in Figure 4(a) by two
sub-blocks: (a) a feasible placement; (b) an infeasible placement.

In the following, we adopt the contour data structure to solve the
mis-alignment problem. When transforming a B*-tree to its corre-
sponding placement, we update the contour to maintain its top profile
sequence as follows. Assume that b� and b� are the respective left and
right sub-blocks of an L-shaped block bL, and they are mis-aligned.
When processing b�, b� must have been placed. We can classify the
mis-alignment into two categories and adjust them as follows:

1. Basin: The contour is lower than the top profile sequence at
the position of the current sub-block b�. (See Figure 7(a).) In
this case, we pull b� up to conform to the top profile sequence
of the L-shaped block bL.

2. Plateau: The contour is higher than the top profile sequence
at the position of the current sub-block b�. (See Figure 7(b).)
In this case, we pull b� up to conform to the top profile se-
quence of bL. (Note that b� cannot be moved down because
the compaction operation makes b� be placed right above an-
other block.)

It is clear that each of the adjustment can be performed in constant
time with the contour data structure.

In the following, we discuss the rotation and flip operations of an
L-shaped block. For each L-shaped block bi, there are eight orien-
tations by rotation and flip, as shown in Figure 4. To preserve the
LC relation and keep it in the B*-tree, we repartition bi into two sub-
blocks after it is rotated or flipped and keep the LC relation between
them. Figure 4 shows the sub-blocks after repartitioning. As shown

b4
b2

b1

0

1

2b2

b1

1

0

2

b1

0

1

2b2

b1

1

0

2

b2

b3b3

b4

b3

b4

LC relations

b3
b4

(a)

(b)

Figure 6: Suppose that b�� b� and b�� b� are two sets of sub-blocks
corresponding to two L-shaped blocks. (a) A placement in which
b�� b� and b�� b� do not abut. Their corresponding nodes in the B*-
tree may not be related. (b) Another placement in which b�� b� and
b�� b� abut. Their corresponding nodes in the B*-tree keep the LC
relation between b� and b� (as well as b� and b�).

in the figure, an L-shaped block is always partitioned by slicing it
along the middle vertical boundary. After repartitioning, we should
update the top profile sequence for the block.

5 Floorplan Algorithm
Our rectilinear floorplan design algorithm is based on the simu-

lated annealing method [6, 15] and the B*-tree described in Section 3.
We perturb a B*-tree (a feasible solution) to another B*-tree by using
the following four operations.

Op1: Rotate a block.

Op2: Flip a block.

Op3: Move a block to another place.

Op4: Swap two blocks.

The Op1 and Op2 operations have been described in Section 4. The
Op3 operation deletes and inserts a block into a B*-tree. If the deleted

b1 b2

b2

b1

(a) (b)

contour

original curve

contour

original curve

Figure 7: Placing two sub-blocks b� and b� of an L-shaped block.
(a) If the contour is lower than the top profile sequence at b�, then
we pull b� up to meet the top profile sequence. (b) If the contour is
higher than the top profile sequence at b�, then we pull b� up to meet
the top profile sequence.



node is associated with a rectangular block, we simply delete the
node from the B*-tree. Otherwise, there will be two nodes asso-
ciated with an L-shaped block, and we must delete the two nodes
from the B*-tree and insert them to other places. Note that the LC
relations must hold. Both of the Op3 and Op4 operations need to ap-
ply the Insert�ni� and Delete�ni� operations, where Insert�ni�
(Delete�ni�) is the operation for inserting (deleting) a node ni to
(from) a B*-tree. The B*-tree must remain a binary tree after dele-
tion or insertion. We detail the deletion and insertion operations in
the following.

5.1 Deletion
The deletion can be categorized into three cases:

� Case 1: A leaf node.

� Case 2: A node with one child.

� Case 3: A node with two children.

In Case 1, we can just delete the target leaf node directly, and the
tree will still be a B*-tree. As shown in Figure 8(a), to delete the
node n� from the B*-tree of Figure 2, we set the left child field of its
parent n� to be NULL and free the node n�.

In Case 2, we remove the target node and then place the single
child at the position of the removed node. For example, after delet-
ing the node n� from the B*-tree of Figure 2, we move n� to the
original position of n� and obtain the tree shown in Figure 8(b). This
tree update can be performed in O��� time. Note that the relative po-
sitions of the blocks might be changed after the operation, and thus
we might need to reconstruct a corresponding placement for further
processing.

In Case 3, when deleting a target node nt with two children, we
replace nt by either its right child or left child nc. Then we move a
child of nc to the original position of nc. The process proceeds until
the corresponding leaf node is handled. For instance, suppose that
we delete the node n� from the B*-tree of Figure 2. We can use the
right child n� to replace it, and then use n� to replace n�. (The re-
sulting tree is shown in Figure 8(c).) It is obvious that such a deletion
operation requires O�h� time, where h is the height of the B*-tree.
Again the relative positions of the blocks might be changed after the
operation, and thus we might need to reconstruct a corresponding
placement for further processing.

Note that if the deleted node ni is a sub-block of an L-shaped bL,
we should also delete the other sub-block of bL.

5.2 Insertion
When adding a block to a placement, we may place the block

around certain block, but not between two sub-blocks that belong to
an L-shaped block. For a B*-tree, we define three types of positions
as follows. (See Figure 9 for an illustration.)

� Inseparable position: A position between two nodes associ-
ated with the two sub-blocks of an L-shaped block.

� Internal position: A position between two nodes in a B*-tree,
but is not an inseparable one.

� External position: A position pointed by a NULL pointer.

Only internal and external positions can be used for inserting a new
node.

For a rectangular block, we can insert it into an internal or an
external position directly. For any L-shaped block bL consisting of
two sub-blocks b� and b�, with b� on the left-hand side of b�, the two
sub-blocks must be inserted to a B*-tree simultaneously, and b� must
be the left child of b� (according to the LC relation).

In the following, we discuss three cases of for inserting an L-
shaped block to an internal position. As shown in Figure 10, if we
insert two nodes b� and b� of an L-shaped block to an internal posi-
tion between nodes bi and bj , with bj being a child of bi, bj can be
placed at the position that is the left child of b�, the right child of b�,
or the right child of b�.

68

5n

n n

7n

(a)

(b)

(c)

0

1

2 3

6

7

8

n

4n

n5n

n n

n

n

n

0

1

2 3

68

n

4n

n5n

n n

n

n

0

1

2 3

6

7

8

n

4n

n5n

n n

n

n

n

0

1

2 3

n

n n

n

0

1

2 3

6

7

8

n

4n

n5n

n n

n

n

n 4n

2n5n

8n 6n

7n

3n

1n

Figure 8: Deletion. (a) Deleting a leaf node, (b) Deleting a node
with only one child, (c) Deleting a node with two children.

6 Extension to General Rectilinear Blocks
In this section, we extend the techniques described in previous

sections to handle general rectilinear blocks. In general, a rectilinear
block can be partitioned into a set of rectangular sub-blocks. Let bi
denote an arbitrarily shaped rectilinear block. bi can be partitioned
into a set of rectangular sub-blocks by slicing bi from left to right
along every vertical boundary of bi, as shown in Figure 11(a).

After perturbing the Op1 and Op2 operations, we repartition a
rectilinear block when it is rotated or flipped. Figure 11(b) shows the
block of Figure 11(a) after rotating by ��� clockwise; there are six
sub-blocks in it after the repartition.

There are two types of rectilinear blocks: convex and concave
blocks. A rectilinear block is convex if any two points within the
block can be connected by a shortest Manhattan path which also lies
within the block; the block is concave, otherwise. Figure 11 and Fig-
ure 12 show two convex and a concave blocks, respectively. A convex
block bC can be partitioned into a set of sub-blocks b�� b�� � � � � bn or-
dered from left to right. Considering the LC relation, we keep the
sub-block bi	� as bi’s left child in the B*-tree to ensure that they are
placed side by side along the x-direction, where � � i � n � �.
To ensure that b�� b�� � � � � bn are not mis-aligned, we modify the pro-
cessing for Basin and Plateau as follows.

� Basin: The contour is lower than the top profile sequence at
the position of a sub-block. We pull the sub-block up to con-
form to the top profile sequence.

� Plateau: The top boundary of a sub-block bi (� � i � n)
in the contour is higher than the top profile sequence at the
position of bi. Assume that bi has the largest top boundary.
We pull all sub-blocks, except bi, up to conform to the top
profile sequence.

Moreover, all sub-blocks must be deleted (or inserted) together for
the OP3 and OP4 operations.



n0

n8

n7

n9

n10 n11

n12 n4

n3

n2 n5

n6

n13

external position
internal position

n1

inseparable position

Figure 9: The inseparable, internal, and external positions of a B*-
tree. (Assume that n� and n� are associated with the same L-shaped
block.) A node can be inserted at either an internal or an external
position.

1

2b

b insert

(a)

1

2b

b

(b)

1

2b

b

(c)

1

2b

b

(d)

bi

bj

bi bi bi

bj bj

bj

Figure 10: Three cases of inserting an L-shaped block to an internal
position.

For a concave block, there might be empty space between two
sub-blocks. As shown in Figure 12, the sub-block b� is placed above
the sub-block b�, which cannot be characterized by an LC relation in
the B*-tree. Nevertheless, we can fill the concave holes of a concave
block and make it a convex block. We call this operation a filling
approximation for the rectilinear block. For any concave block, we
treat it as a convex block after applying appropriate filling.

7 Experimental Results
We implemented our algorithm in the C++ programming lan-

guage on a 450MHz SUN Ultra Sparc-I workstation with 1 GB mem-
ory. Since the benchmarks in previous work are artificial cases and
unavailable to us, we generate some general benchmarks for experi-
ments in this paper. Our test cases were generated by cutting a rect-
angle into a set of blocks. Therefore, the optimum area is given by
the original block.

As shown in Table 1, Columns 2, 3 and 4 list the numbers of
rectangular, L-shaped, and T-shaped blocks. RL10, RL20, and RL30
consist of only rectangular and L-shaped blocks. There are five rect-
angular and five L-shaped blocks in RL10, ten rectangular and ten L-
shaped blocks in RL20, and fifteen rectangular and fifteen L-shaped
blocks in RL30, respectively. RLT10, RLT20 and RLT30 consist of
not only rectangular and L-shaped blocks, but also T-shaped ones.
RLT10 is composed of four rectangular, three L-shaped, and three
T-shaped blocks, RLT20 is composed of seven rectangular, seven L-
shaped, and six T-shaped blocks, and RLT30 is composed of ten rect-
angular, ten L-shaped, and ten T-shaped blocks. The original area
of each test case is shown in Column 5. Columns 6 and 7 list the
resulting area and the dead space (%). The results show that our al-
gorithm obtains the optimum area for RL10 and near optimum areas
for RL20, RL30, RLT10, RLT20, and RLT30 with areas only 2.00%,
4.00%, 2.00%, 3.50%, and 5.00% away from the optima, respec-

b1

b2
b3 b4

b5 b6

b1
b2

b3 b4 b5

b6

b7

(a) (b)

Figure 11: (a) Partition a convex block along every vertical bound-
ary from left to right. (b) Repartition the block of (a) after it rotates.

filled area b1

b2

Figure 12: Filling approximation for a rectilinear block.

tively. The runtimes for achieving the results ranged from about 8
seconds to 50 minutes (see Column 8). Figures 13 and 14 show the
optimum and the resulting placement for RL10 and RLT30, respec-
tively.

1 2

3 4

5

6

7

8 910

1

2

3 5

6

7

8

9

10

(a) (b)

4

Figure 13: Placement for RL10: 5 rectangular and 5 L-shaped
blocks. (a) The optimum placement (10 x 10); (b) The resulting
placement (10 x 10).

8 Conclusions
In this paper, we have extended the B*-tree approach introduced

in [1] to arbitrarily shaped rectilinear blocks. Rectilinear blocks were
partitioned into a set of rectangular sub-blocks, each of them is indi-
vidually represented by a node in the B*-tree. The LC relations and
the basin and plateau operations were used to ensure that each block
keeps its original shape. The experiment results have shown that our
approach is very effective in area utilization.

References
[1] Yun-Chih Chang, Yao-Wen Chang, Guang-Ming Wu and Su-

Wei Wu, “B*-Trees: A New Representation for Non-Slicing
Floorplans,” Proc. IEEE/ACM Design Automation Conf., pp.
458–463, 2000.

[2] Pei-Ning Guo, Chung-Kuan Cheng, and Takeshi Yoshimura,
“An O-Tree Representation of Non-Slicing Floorplan and Its



Circuits #Rectangular #L-shaped #T-shaped Optimum Resulting Dead Runtime
blocks blocks blocks area area space (%) (sec)

RL10 5 5 0 100 100 0.00 8
(10 x 10) (10 x 10)

RL20 10 10 0 400 408 2.00 307
(20 x 20) (15 x 27)

RL30 15 15 0 900 936 4.00 1636
(30 x 30) (29 x 32)

RLT10 4 3 3 100 102 2.00 41
(10 x 10) (6 x 17)

RLT20 7 7 6 400 414 3.50 1096
(20 x 20) (18 x 23)

RLT30 10 10 10 900 945 5.00 3007
(30 x 30) (27 x 35)

Table 1: The experimental results.

1 2

3
4

5 6

7
8

9
10

11

12

13

14

15 16

17
18 19 20

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

20

(a) (b)

19

21

22 23

24

25

26

27

28

29
30

21

22 23

26
25

24

27
29

30
28

Figure 14: Placement for RLT30: 10 rectangular, 10 L-shaped, and
10 T-shaped blocks. (a) The optimum placement (30 x 30); (b) The
resulting placement (27 x 35).

Applications,”Proc. IEEE/ACM Design Automation Conf., pp.
268–273, 1999.

[3] Christos H. Papadimitriou, and Kenneth Steiglitz, Combinato-
rial Optimization, prentice Hall, 1982.

[4] M. Z. Kang and W. Dai., “General floorplanning with L-
shaped, T-shaped and soft blocks based on bounded slicing
grid structure,” Proc. Asia and South Pacific Physical Design
Automation Conf., pp. 265–270, 1997.

[5] M. Z. Kang and W. Dai., “Arbitrary Rectilinear Block Packing
Based on Sequence Pair,” Proc. International Conference on
Computer-Aided-Design, pp. 259–266, 1998.

[6] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimiza-
tion by Simulated Annealing,” Science, vol. 220, no. 4598,
pp. 671–680, May 13, 1983.

[7] T. C. Lee, “An Bounded 2D Contour Searching Algorithm
for Floorplan Design with Arbitrarily Shaped Rectilinear and
Soft Modules, ”Proc. IEEE/ACM Design Automation Conf.,
pp. 525–530, 1993.

[8] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani,
“Rectangle- Packing Based Module Placement,” Proc. In-
ternational Conf. on Computer-Aided-Design, pp. 472–479,
1995.

[9] H. Murata, K. Fujiyoshi, and M. Kaneko, “VLSI/PCB Place-
ment with Obstacles Based Sequence Pair,” Proc. Internal
Symposium on Physical Design, pp. 26–31, 1997.

[10] H. Murata, Ernest S. Kuh, “Sequence Pair Based Placement
Method for Hard/ Soft/Pre-placed Modules,” Proc. Internal
Symposium on Physical Design, pp. 167–172, 1998.

[11] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani, “Mod-
ule Placement on BSG-Structure and IC Layout Applications,”
Proc. IEEE International Conf. on Computer-Aided-Design,
pp. 484–491, 1996.

[12] S. Nakatake, M. Furuya, and Y. Kajitani, “Module Placement
on BSG-Structure with Pre-Placed Modules and Rectilinear
Modules,” Proc. Asia and South Pacific Physical Design Au-
tomation Conf., pp. 571–576, 1998.

[13] R. H. J. M. Otten, “Automatic Floorplan Design, ”Proc. De-
sign Automation Conf., pp. 261–267, 1992.

[14] B. T. Preas, and W. M. vanCleemput, “Placement Algorithms
for Arbitrarily Shaped Blocks,” Proc. IEEE/ACM Design Au-
tomation Conf., pp. 474–480, 1979.

[15] C. Sechen, and A. Sangiovanni-Vincentelli, “The TimberWolf
Placement and Routing Package,” IEEE Journal of Solid-State
Circuits, vol. 20, no. 2, pp. 510–522, Apr. 1985.

[16] T. C. Wang, and D. F. Wong, “An Optimal Algorithm for
Floorplan and Area Optimization, ”Proc. IEEE/ACM Design
Automation Conf., pp. 180–186, 1990.

[17] D. F. Wong, and C. L. Liu, “A New Algorithm for Floorplan
Design,” Proc. IEEE/ACM Design Automation Conf., pp. 101–
107, 1986.

[18] D. F. Wong, and C. L. Liu, “Floorplan Design for Rectangular
and L-shaped Modules,” Proc. IEEE International Conf. on
Computer-Aided-Design, pp. 520–523, 1987.

[19] Jin Xu, Pei-Ning Guo, and Chung-Kuan Cheng, “Rectilinear
Block Placement Using Sequence-Pair,” Proc. Internal Sym-
posium on Physical Design, pp. 173–178, 1998.


