
 iii

南 華 大 學

資訊管理學系

碩士論文

利用A*演算法於無線環境之資料廣播問題

Using A*Algorithm for Data Broadcast in Wireless Environment

 研 究 生：邱美倫

指導教授：吳光閔 博士

中華民國 九 十 四 年 六 月

 vi

 vii

誌謝

 終於可以寫誌謝了!論文的完成要感謝很多人，尤其是指導教授 吳光

閔老師，感謝老師悉心指導我的論文，讓學生可以快速掌握學習的重點

與方向。論文的整體架構與修正多虧老師的解惑與指導才得以完成。感

謝邱宏彬老師在我的求學過程中的叮嚀與提攜、已故 徐惠珍老師的教誨

和江明朝老師於口試中對本論文提出的建議。

 在南華的求學生涯中，除了感謝家人的支持，也特別感謝阿信、伊汝、

琬蓉、靜瑜、嘉明及所有夥伴的陪伴與扶持，南華研究室扮演著家庭的

角色，大家的感情好的像兄弟姐妹一樣，所有的互動都將成為我心中美

麗的回憶。

邱美倫 僅識

于南華大學

民國九十四年六月

 viii

利用A
*
演算法於無線環境之資料廣播問題

學生：邱美倫 指導教授：吳光閔

南華大學資訊管理學系碩士班

摘 要

在無線環境中，使用廣播方式傳送資料是一種有效率傳輸模式。在

此環境下，伺服端連續且不斷的廣播資料，讓使用者擷取自己所需的資

料。因此伺服端如何決定廣播頻道上的資料順序，讓使用者的總存取時

間達到最小，是個很重要的議題。過去多數的研究只考慮到一筆查詢

(query)只有包含一個資料項(單一資料項)，而忽略現實生活中使用者

的要求多半會包含兩個以上的資料項(多重資料項)。故本研究針對無線

廣播通道環境下，且使用者多重要求資料項時，提出A
*
演算法找出資料

項的廣播排程，以降低使用者接收資料項所需的時間。由實驗結果證明

我們所提出的方法較QEM演算法[14]好。

 關鍵字: 資料廣播、總存取時間、多重資料項

 ix

Using A*Algorithm for Data Broadcast in Wireless

Environment

Student: Mai-Lun Chiu Advisor: Dr. Guang-Ming Wu

Department of Information Management

The M.B.A Program

 Nan-Hua University

ABSTRACT

Data Broadcasting is an efficient communication model when clients

request data from a server in wireless environment. Data is delivered by a

server downstream with a wide bandwidth. All clients keep listening to the

broadcast channel and catch the data that interest them. The important issue of

designing a proper broadcast schedule is to reduce the clients’ total access

time. Most previous researches focused on a query just only include one data

item, but not consider multiple data items are included in a query. In this

paper, we propose an A* algorithm to the broadcast problem which consider

the complex queries where a query include multiple data items. Experiential

results show that our method outperforms the QEM algorithm [14] in access

time.

Keywords: Data Broadcasting, Total Access Time, Complex Queries

 x

Table of Contents

Chapter 1 Introduction... 1
Chapter 2 Broadcast Scheduling Problem.. 10

2.1 Symbol definitions... 10
2.2 Effect of different broadcast schedule ... 12

Chapter 3 A* search algorithm Approach to Wireless Data Placement... 15
3.1 Basic idea ... 15
3.2 Description... 16
3.2 Using A* algorithm for data broadcast... 18

3.2.1 Cost function ... 18
3.2.2 Our algorithm .. 23
3.2.3 Set a range to implement A* algorithm ... 25

Chapter 4 Performance Evaluation... 28
4.1 Efficiency of the Various Window Sizes and Iterations 28
4.2 Efficiency of the Number of Data Items.. 29
4.3 Efficiency of the Number of Query Patterns ... 32
4.4 Efficiency of Selectivity Parameter S .. 35

Chapter 5 Conclusion.. 37
References .. 38

 xi

Table of Tables
Table 2- 1：Symbol definitions [14]. ... 10

Table 4- 1：Improvement ratio with different data items with normal

distribution.. 30

Table 4- 2：Improvement ratio with different data items with uniform

distribution.. 32

Table 4- 3：Improvement ratio with different number of query patterns with

normal distribution. .. 33

Table 4- 4：Improvement ratio with different number of query patterns with

uniform distribution.. 34

Table 4- 5：Improvement ratio with different selectivity with normal

distribution.. 36

 xii

Table of Figures

Figure 1- 1：The environment of wireless broadcast for pull-based system. .. 3

Figure 1- 2：The environment of wireless broadcast for push-based system.. 4

Figure 1- 3：The approach of index tree.. 5

Figure 2- 1：The QD of a query. .. 11

Figure 2- 2：The example of the Access Time. .. 13

Figure 2- 3：The different broadcast scheduling has different access time... 14

Figure 3- 1：A state space graph. ... 15

Figure 3- 2：The relationships of data items with different queries. 19

Figure 3- 3：State space graph for the example in Figure 3-2. Sub graph

searched during Brand and Bound (solid), and optimal path

(bold). .. 20

Figure 3- 4：The calculation of a node of ˆ' ()i iV s C V 21

Figure 3- 5：The calculation of a node of ˆ' ()i iV s C V 22

Figure 3- 6：Expand V5 to calculate the ˆ' ()i iV s C V 23

Figure 3- 7：Expand V8 to calculate the ˆ' ()i iV s C V 23

Figure 3- 8：Set a window size. ... 26

Figure 4- 1：Total Access Time of various numbers of data items with

different window sizes and iterations. The query patterns’

access frequencies are uniform distribution............................ 29

Figure 4- 2：Efficiency of the number of data items with normal distribution.

... 30

Figure 4- 3：Efficiency of the number of data items with uniform distribution.

... 31

 xiii

Figure 4- 4：Efficiency of the number of query patterns with normal

distribution. ... 32

Figure 4- 5：Efficiency of the number of query patterns with uniform

distribution. ... 34

Figure 4- 6：Efficiency of different selectivity. ... 35

 1

Chapter 1 Introduction

In this chapter, we describe the wireless environment of data broadcasting,

some problems are discussed and instruction our approach. At last, we list our

research framework.

Advance in science and technology, internet and intranet have enabled

the development of data-dissemination applications. The mobile computing

and the communication technology in wireless are expanded fast in recent

years. There are more and more people to utilize the public infrastructures to

deliver information to other mobile users who are interested in the

information.

Wireless network architectures can be divided into Ad-Hoc and

Client-Sever. An ad-hoc network forms a temporary network which consists

of mobile devices without pre-established infrastructure [23]. In Ad-Hoc

network, each mobile device can be a server to send information to its

neighborhood or just be a client to receive the data items, and each mobile

device could move free in its communication range. The power control

problem of portable devices makes mobile users communicate only within

their transmission ranges [28]. In [10] had proposed a broadcast tree method

with shorting the longest edge among a spanning tree to save power

consuming. There is a research using neighbor caching strategy to put the data

items which it will request in its neighborhood for sharing their cache

capability, it is an algorithm that can adjust neighbor caching ability and

makes all caches flexible according to their idleness of storage [11]. The

research in [10], proposed a forwarding set selection scheme to broadcast with

 2

transmission power control in two-hop ad hoc network. The two-hop local

information included node ID and node’s signal strength which was used to

calculate the transmission power.

The wireless communication in client-sever includes a server and many

clients. Each mobile client could access data items which they interest in pass

the server. The communication capacity from a server to clients (downstream)

is far greater than clients to a server (upstream) in the wireless environment.

For example, a server has a high bandwidth broadcast capacity if clients can

not sent data with lower bandwidth. That means in the wireless environment,

the mobile users are limited in bandwidth and power consuming. Because of

this reason, the mobile users just care how long they will receive the data

completely which they want to use and how to reduce the power consuming.

Therefore, information systems taking broadcast-based are proposed in

succession. Acharya et al. [1, 2, 5, 34] proposed Broadcast Disk for

structuring the broadcast way. The client terminals take over the information

through the broadcast system. The server analyzes the data items access

patterns of all queries of clients and broadcasts the data items in turn.

In wireless broadcast environment, the server will sent all data items

repeatedly and continuously. Such the systems can be categorized into two

ways to broadcast data items： (1) pull-based approach [7, 20, 31, 33, 39,

44]：It considers whether clients sent data queries to the server. A server only

broadcasts data items on demand as mobile devices ask them explicitly, so

unwanted data items will never be broadcast (shown in Figure 1-1). (2)

push-based approach [6, 12, 17, 18, 35, 38, 45, 47]：A server broadcasts data

items repeatedly and mobile devices listen to the broadcast channel and

receive the data items needed. The benefit of this way is the scalability. The

 3

broadcast scheduling will be given an indication of data items desired by all

clients and the cost for delivering data items is independent of queries. In

other words, a push-based broadcast can satisfy multiple queries with the

same data items. While the mobile devices entry the broadcast channel and

sent their queries, they will listen to the information until they receive all data

items which they interested in. We show the environment of wireless

broadcast for push-based system in Figure 1-2.

Figure 1- 1：The environment of wireless broadcast for pull-based system.

There are two important issues when we discuss wireless data

broadcasting which are shorten tuning time and reduce access time. The

tuning time is the amount of time spent by a client listening to the channel

[14]. The tuning time is determined by power consuming while mobile

devices receive data items [13]. The access time is the amount of time elapse

DB

………..

Base Station

Schedule Processing

(d1, d2)
) (d1, d3)

)

(d2, d3)
)

(d5, d7)
)

Mobile devices sent on-demand query

(d1, d2)
)

(d1, d3)
)

(d2, d3)
)

(d5, d7)
)

 4

from the moment a client submits a query to the receipt of the data items of

his interest on the broadcast channel [14].

Figure 1- 2：The environment of wireless broadcast for push-based system.

Mobile devices will operate in two modes. One is called active mode,

while the mobile devices connect the broadcast channel and examine the

information from the server to decide if they should receive the data items. In

this mode, CPU is operated for investigating the information whether match

what they need and it will consume amount of battery power. Another mode

means the mobile devices are worked in the doze mode to save power

consuming as their demanded data objects arrive yet.

For energy saving, there were researches proposed by using index

techniques (shown in Figure 1-3) to access data objects on the broadcast

channel [13, 23, 24, 32, 43]. Index based organization of data transmitted over

broadcast channel, is very important form the power conservation point of

view and can result in significant improvement in battery utilization [25].

They added some information in front of all data items and all clients can

DB

dn d1 d2 ………..

Base Station

Schedule Processing
(d1, d2)
)

(d1, d3)
)

(d2, d3)
)

(d5, d7)
)

 5

accord to the addition information to access data objects without listening in

the channel continuously, all mobile clients can be directed to take over the

data items efficiently. In [22, 24, 25], the index data are broadcast m times for

each broadcast cycle, called (1,m). Distributed indexing improves (1,m)

indexing algorithm by decreasing some partial replication of index. Some

researches [42, 43], introduced taxonomy of index dissemination for

broadcast channels. They utilize B+ tree to construct search model.

Figure 1- 3： The approach of index tree.

In [36] devised an algorithm, referred to as algorithm DL, to dynamically

adjust the broadcast programs by shuffling data items among different levels

in the allocation tree. In [23], proposed two policies to reduce the tuning time.

The lower power level index first policy tended to cache the leave index

nodes of the index tree while the cut plane first policy cached the cut-plane of

index tree. In [37], proposed a novel on-demand method, named NICD

(Normalized Inter Cluster Distance), which eliminates the need for indexing

the broadcast schedule by enabling mobile devices compute the require index

information themselves. In [17], proposed an on-line algorithm to disseminate

events update. It assumed that each channel has the fixed time slots and used

the concept of TDM (Time Division Multiplexing) to disseminate data items.

di di di di.....

index item

data items

 6

Mobile devices monitored the channel with the same interval time to save

energy consuming and avoid missing update data items. In [43], presented a

global indexing scheme for location dependent queries, which was designed

to serve queries in which the query result is relevant to client’s location.

Many schemes proposed to broadcast data items efficiently to a large

number of mobile devices. They tried to minimize the total access time for the

data items needed. Some algorithms consider the property of real-time data

items and non-real-time data items. In the real-time system [8, 27, 31, 33], the

data items must be transferred to clients within the deadline. In [27]

introduced the concept of absolute validity interval (AVI) to capture the

temporal constraint of the data items. It was applied in many applications

such as stock trading system, traffic system…, and so on. For example, the

stock price changes at any time, and if the users can not receive correct price

information, they will not handle the stocks on time. In intelligent vehicle

highway system (IVHS) [31], sent present traffic information to drivers on

time. If the information is not sent to the drivers on time, it will be useless

information.

In non-real-time system, many broadcasting schedules are studied to

reduce the waiting time of clients for asked data items on the air. For

transmitting data items efficiently, we must look for suitable broadcasting

schedule of a set of data objects. Some researches were proposed in [14, 30],

which utilize the characteristic of data frequently to decide the scheme. So the

more popular data items must be broadcasted many times or be placed in front

of the not popular data items in the same cycle. The schedule methods [12, 19,

29, 45, 46], established the broadcast schedule by using caching strategy

which put the hot data in local host. The advantage of this way is decreasing

 7

the times for clients to ask their desired data items pass a server. However, it

is limited in the cache size of capacity with each mobile user. In [18],

proposed the method is called First Come First Served (FCFS), which ordered

the data items by their request time. The advantage is the access request will

get responded in a finite time. But it does not consider the difference of access

frequency with data items. In the later, Most Request First (MRF) scheduling

method broadcasts the data items which bases on the largest number of

request was proposed. If most-frequent data items in a broadcast cycle, they

will have higher response ratio. But its shortcoming is the lower-frequency

data items will always put behind the most-frequent data items. So the request

on those will not be satisfied in a short period. In addition, [4] combined the

benefits of MRF and FCFS in order to provide good performance for both hot

and cold data items. It considers the data items of access frequency and

waiting time to calculate the proper data scheduling, declared as R×W method.

In [40, 47], proposed a non-greedy, low polynomial time cost optimization

method to place data over a wireless broadcast channel for multi-dimensional

range query processing.

 Previous works have focused on retrieving a single data item from a

broadcast channel. But in real word, mobile devices may access multiple data

items. Few works [15, 19, 27], had been done on complex queries where a

query includes multiple data items. In [15], addressed the clustering of data

items for multipoint requests, that was, a query access more than one data

item recorded on the broadcast stream. It defined two affinity measures：data

affinity and segment affinity. The method clustered data items based on the

two measures.

 Some researches [35, 38], using data mining techniques decide a

 8

broadcast scheme. They based on analyzing the broadcast history (i.e., the

chronological sequence of data items that had been requested by mobile

devices) to find associations and sequences in individual data items. In [14],

they construct the data scheduling by appending the data items of each query

to minimal total access time with greedy method. It considers the frequency

of each query to find the relationship between all data items. If the data items

have high relationship, they will be put on together. But in this way, they just

only account of the data items in one query, and ignore the situation of all

data items which were accessed in whole queries.

In this paper, our goal is to find a good broadcast scheduling that can be

reduced clients’ access times. Our system environment is assumed as

follows：

 The server broadcast data items on a push-based system.

 There is only one broadcast channel.

 A query can be included multiple data items.

 The size of data items is equally.

 A data item will be disseminated once in the same broadcast cycle.

The data placement problem can be formulated as a path search problem,

hence we propose an A* algorithm which is a graph search algorithm to

decide a broadcast scheduling. A* algorithm is quite famous in artificial

intelligence domain. In the A* algorithm, we consider the requested

relationships among data items in whole queries. We design a cost function

and combine a heuristic Breadth-First-Search algorithm to find a good

solution. In order to arrive at the aim in the reasonable time, we also design a

window size to make the data items within the range are performed A*

algorithm for searching optimal data placement in a window size. Experiential

 9

results show that our method outperforms the QEM algorithm in access time.

The rest of this paper is organized as follows. Chapter 2, we define the

problem of the data broadcasting problem in the wireless environment and

address some assumption conditions. The A* algorithm for data allocation

with some illustrative examples is proposed in Chapter 3. Performance study

results are discussed in Chapter 4. Final, conclusions are given in Chapter 5.

 10

Chapter 2 Broadcast Scheduling Problem

In this chapter, we define the data placement problem and introduce

how the issue is produced. This problem was showed that it is a NP-complete

problem [14]. We will use QD method [14] to measure the total access time of

a query which is a mobile client needed.

2.1 Symbol definitions

Table2- 1：Symbol definitions [14]

Notation Meaning

id a data item to be broadcast

D a set of data items id ;{ 1d , 2d ,..., nd }

B the size of a broadcast stream i.e., Ddd ii ∈∀∑ ,

iq a query that is issued on broadcast data stream

)(iqQDS the set of data items that iq accesses

)(iqferq the frequency of iq

Q the set of queries of;{ 1q , 2q ,..., Mq }

σ the broadcast schedule of D

Table 2-1 shows some notations for problem definition [14]. A server

will place the data items on the broadcast channel to minimize the total access

time (TAT), denoted by [14]：

() (,) (),
i

avg
i i

q Q

TAT AT q freq qσ σ
∈

= ×∑ (1)

 11

where (,)
i

a vg

i
q Q

qA T
∈

σ is the average access time of a query iq based on σ .

Because clients tune into broadcast channel on different time,

(,)
i

a vg

i
q Q

qA T
∈

σ is hard to calculate. However, a measure manner Query

Distance (QD) is proposed to evaluate (,)
i

a vg

i
q Q

qA T
∈

σ , that indicates the

degree of coherence of the data items in a query [14]. The measure is

interpreted as follows：

Definition 1 [14]：

Suppose ()iQDS q is { 1d , 2d , …, nd } and jδ is the interval between jd

and 1+jd in a schedule σ . Then the QD of iq in σ is defined as ：

nkMAXBqQD ki ~1),()(, =−= δσ

The example in Figure 2-1, we assume >=< 5,4,3,2,1 dddddσ , the B is

equal to 5 and the }{)(4,2 ddqQDS i = . Hence the 1δ is equal to 1 and 2δ is

equal to 2, and 325)()(, =−=−= ki MAXBqQD δσ .

Figure 2- 1：The QD of a query.

In [14] proposed the lemma as follow：

 Given a query iq and two schedule 1σ and 2σ

d4 d5 d1 d2 d3 d4 d5 d1 d2 d3 d4 d5 d1 d2

current broadcast cycle next broadcast cycle

1δ 2δ

 12

If)(AT)(AT then)()(2,
avg

1,
avg

2,1, σσσσ iiii qqqQDqQD ≥≥

 The total query distance is presented as ()TQD σ that is defined

as)()(, ii qfreqqQD ∗σ , where
i

q Q∈ . The broadcast scheduling problem

redefine to minimize the ()TQD σ .

The definition was proposed in [14]：

 Given a set of queries Q and a set of data items D, the wireless data

placement problem is to find a broadcast schedule iσ such that TQD(iσ) is

minimum among all possible , 1,...i iσ = ,

2.2 Effect of different broadcast schedule

 A broadcast scheduling of a server determines an ordering of data items

which through the server. We use σ as a broadcast cycle which presents a

data ordering. In this paper, we assume that there is a server and some clients

in the wireless environment. Server will analyze the clients’ request patterns

to find a data schedule. The sizes of data items are equally and they will be

broadcasted once in the same cycle. Besides, we allow each query can consist

of more than one data items. A data item is denoted as di in this paper.

 13

Figure 2- 2：The example of the Access Time.

An ordering of data items affects the access time of all clients directly

[14]. For example, in Figure 2-2 (a), we assume the broadcast cycle σ = <d1,

d2, d3, d4, d5>. There is a client (Ci) which requests the data items d3 and d5 (qi

＝{d3, d5}). Ci listens to the broadcast channel when the server broadcasts d3

in part. In order to access d3 completely, it will wait for next broadcast cycle,

but d5 will be received in current broadcast cycle. In other words, the client

must wait for d3 until next broadcast cycle to access d3 and d5 completely. We

present the AT (qi) as the time from a client tunes in a broadcast channel until

it receives all data items which are the client wanted. So while the broadcast

cycle σ = <d1, d2, d3, d4, d5>, the AT (qi) is equal to 5.5 (Figure 2-2(a)). But if

the broadcast cycle is changed as 'σ = <d4, d1, d2, d3, d5>, the AT (qi) will be

2.5 (Figure 2-2(b)).

d1 d2 d3 d4 d5 d1 d2 d3 d4 d5

current broadcast cycle next broadcast cycle

start to read d3 and d5 receive d3 and d5 completely

access time = 5.5

(a)

d4 d1 d2 d3 d5 d4 d1 d2 d3 d5

current broadcast cyclenext broadcast cycle

start to read d3 and d5 receive d3 and d5 completely

access time = 2.5

(b)

 14

Figure 2- 3：The different broadcast scheduling has different access time.

However, in real world, there are many clients to request different queries. If

we change the broadcast cycle, it maybe increases the access time of some

clients. For example, we assume two clients sent their queries, q1 = {d1, d2}

and q2 = {d2, d3}. If σ = <d1, d2, d3, d4, d5>, the
1

() 2AT q = and
2

() 3AT q =

(shown in Figure 2-3(a)). If 'σ = <d2, d3, d5, d1, d4>, then
1

()AT q will be

increase from 2 to 4, and
2

()AT q will be decrease from 3 to 2 (shown in

Figure 2-3(b)). In this case, we know the benefit among queries is a complex

and hard work, and all data items have different frequency with accessing

times. Our purpose is to decide a data schedule to make the Total Access Time

as smaller as possible.

d1 d2 d3 d4 d5

q2＝{d2, d3﹜

d2 d3 d5 d1 d4

q2＝{d2, d3}

q1＝{d1, d2} q1＝{d1, d2} AT(q1) = 2

AT(q2) = 3 AT(q2) = 2

AT(q1) = 4

(a) (b)

 15

Chapter 3 A* search algorithm Approach to

Wireless Data Placement

3.1 Basic idea

A* algorithm [16, 41] is a graph search algorithm that finds a path from a

given initial node to a given goal node. It utilizes a "heuristic estimate" that

orders each node by estimating the best route that goes through that node. It

visits the nodes in order of this heuristic estimate. The A* algorithm is

therefore an example of best-first search. The Best-First-Search (BFS)

algorithm [41] uses heuristic function to estimate how far from the goal.

Instead of choosing the node closest to the start point, it selects the node

closest to the goal node. Because of using a heuristic function guides the way

towards the goal node very quickly.

Figure 3- 1：A state space graph.

Let we consider the follow example. If we are standing at place X, and

we want to go to place Y. The X place is a node of the graph and a road is an

start

3dN

2dN

1dN

4dN

5dN

goal

2

3

4

3

2

2

2

2

1

3

5

 16

edge. The data placement problem can be formulated as a path search

problem in an acyclic directed graph, called state space graph (shown in

Figure 3-1). If we do a breadth-first search which is like Dijkstra's Algorithm

[41], we will search all nodes within a state space graph, gradually expanding

paths to search places farther and farther away from our starting node.

However, a better strategy is to explore the node directly to the goal node first.

Then, the roads permitting, we will continue to explore intersections closer

and closer to the goal.

3.2 Description

A* algorithm begins at a selected node. Applied to this node is the "cost"

of entering this node (usually zero for the initial node). A* algorithm then

estimates the cost to the goal node from the current node. The heuristic cost is

assigned to the path leading to this node. Then, the node is added to a priority

queue, usually denoted as "open". The algorithm after removes the next node

from the priority queue. If the queue is empty, there is no path from the initial

node to the goal node and the algorithm can be stopped. If the node is the goal

node, A* algorithm will output the successful path.

If the node is not the goal node, new nodes are created for other

admissible adjoining nodes. For any successive node, A* algorithm calculates

the "cost" of entering the node and saves it with the node. This cost is

calculated from the cumulative sum of costs which are stored with their

ancestors, plus the cost of the process which reached this new node.

The algorithm maintains a "closed" list of nodes which have been

checked. If a generated node newly has been located in this list with an equal

 17

or lower cost, no further processing is done on that node. If a node in the

closed list mates a new node, but had been stored with a higher cost, it is

removed from the closed list, and processing continues on the new node. Next,

an estimate of the new node's cost to the goal is increased to the cost with

forming the heuristic for that node. Then it is added to the "open" priority

queue, unless an identical node with lesser or equal heuristic is found there.

As soon as the above steps have been repeated for each new adjoining

node, the original node taken from the priority queue is added to the "closed"

list. The next node is then popped from the priority queue and the process is

repeated. The A* algorithm procedure is a branch and bound search algorithm,

with an estimate of remaining path, which is combined with the dynamical

programming principle. It is also an important work to design a proper cost

function in a heuristic search algorithm. An estimate of the new node's cost

directly affects the final solution. If the estimate of remaining path forever is a

lower-bound on the actual path, it is the optimal solution. We will describe

our cost function in 3.2.2. To conduct A* algorithm search below [16]：

 From a one-element queue consisting of a zero-length path that

contains only the root node.

 Until the first path in the queue terminates at the goal node or the

queue is empty,

 Remove the first path from the queue; create new paths by

extending the first path to all the neighbor of the terminal node.

 Reject all new paths with loops.

 If two or more paths reach a common node, delete all those paths

except the one that reaches the common node with the minimum

cost.

 18

 Sort the entire queue by the sum of the path length and a

lower-bound estimate of the cost remaining, with least-cost paths

in front.

 If the goal node is found, announce success; otherwise, announce

failure.

3.2 Using A* algorithm for data broadcast

Using A* to decide a path with minimum costs in a state space graph is

effective [5, 9]. It is a branch and bound algorithm that starts at a vertex and

branches at the vertex i with the lowest cost that has been visited up now.

Note that only the visited nodes are created dynamically.

A correct estimate will cause only expansions on the optimum path.

Moreover the search is accelerated by the use of a monotonically increasing

cost function, because not any vertex will be expanded twice. Next, we

introduce our cost function.

3.2.1 Cost function

There are different results with different cost functions, so how to

estimate the cost of each node is an important work. In this session, we

illustrate our cost function with a simple example.

Assume there is a set of data items to be placed, denoted as D= {d1,

d2,…,dn}. A query kq accesses a set of data items is represented as ()
k

QDS q .

We introduce the relationship of data items for the queries kq in Figure 3-2.

 19

Figure 3- 2：The relationships of data items with different queries.

A vertex is denoted as iV included a set of data items that has been placed

(shown in Figure 3-3). The 'iV s parent node is)(iVP . A cost of the vertex

iV is denoted as ()iC V and))((iVPC is the cost of its parent node. The

()iM V D⊂ means a set of data items which has been placed and

()iM V D⊂ is a set of data items which not have been placed. The ˆ ()iC V is

the number of queries that links ()iM V and ()iM V . If there are n queries

between the two set, ˆ ()iC V is equal to n. The number within a vertex in

Figure 3-3 is ˆ ()iC V . We illustrate how to order the data items with a simple

case.

q5

q4

q3

q2

q1

d1 d2 d3 d4

● ● ● ●

●

● ●

● ●

● ●

 20

Figure 3- 3：State space graph for the example in Figure 3-2. Sub graph
searched during Brand and Bound (solid), and optimal path (bold).

For example, if there are five queries 1()QDS q ＝{d1, d2}、 2()QDS q ＝

{d2, d3}、 3()QDS q ＝{d2, d3, d4}、 4()QDS q ＝{d3, d4}、 5()QDS q ＝{d1, d4},

the data items’ relationships are shown in Figure 3-3. The cost of vertex V1、

V2、V3、V4 are equal to 2、3、3、3, denoted as 2)(ˆ
1 =VC 、 3)(ˆ

2 =VC 、

3)(ˆ
3 =VC 、 3)(ˆ

4 =VC , the computational processes are presented in Figure

3-4. In other words, if exists two data items, id and
jd belonged to ()kQDS q ,

and ()i id M V∈ 、 ()j id M V∈ , then we add 1 to)(ˆ
iVC . Thus the cost function in

our research is presented as follows：

)(ˆ))(()(iii VCVPCVC += (2)

3

5

3

3

0

0

V0{ }

2

V1 {d1}

3 V2 {d2}

3 V3 {d3}

3 V4 {d4}

3
V6{d1, d3}

V7{d1, d4}

V9{d1, d2, d3 }

V10{d1, d2, d4 }

V11{d1, d4 , d2}

V12{d1, d3 , d4}

V13{d1, d4 , d3}

V15{d1, d2, d3 , d4}

V16{d1, d2, d3 , d4} Initial
state

V14{d1, d2, d3 , d4} V5{d1, d2}
V8{d1, d2, d3 }

 21

d1 d2
d3
d4

)(iVM)(iVM

q1

q5

(a) 1
ˆ () 2C V =

d2 d1
d3
d4

)(iVM)(iVM
q1

q3

q2

(b) 2
ˆ () 3C V =

d3 d1
d2
d4

)(iVM)(iVMq2

q4

q3

(c)
3

ˆ () 3C V =

d4 d1
d2
d3

)(iVM)(iVM
q3

q5

q4

(d) 4
ˆ () 3C V =

Figure 3- 4：The calculation of a node of ˆ' ()i iV s C V .

Our goal is to find a data schedule that let ()TAT σ is smaller as possible.

According to the cost function, we calculate the vertex as follows to find an

optimum solution. Figure 3-3 is a state space graph for the example in Figure

3-2. The calculation of a node of ' ()i iV s C V are explained as follows：

1

ˆ () 2C V = 、
1 0

(()) 0 ()C P V C V= = so
1 1 1

ˆ() (()) () 0 2 2C V C P V C V= + = + =

2

ˆ () 3C V = 、
2 0

(()) 0 ()C P V C V= = so
2 2 2

ˆ() (()) () 0 3 3C V C P V C V= + = + =

3

ˆ () 3C V = 、
3 0

(()) 0 ()C P V C V= = so
3 3 3

ˆ() (()) () 0 3 3C V C P V C V= + = + =

4

ˆ () 3C V = 、
4 0

(()) 0 ()C P V C V= = so
4 4 4

ˆ() (()) () 0 3 3C V C P V C V= + = + =

 22

(c) 7
ˆ () 3C V =

d1→
d2

d3
d4

)(iVM)(iVM
q2

q5

q3

(a) 5
ˆ () 3C V =

(b)
6

ˆ () 5C V =

d1→
d4

d2
d3

)(iVM)(iVM
q1

q4

q3

d1→
d3

d2
d4

)(iVM)(iVM

q2

q4
q3

q1

q5

Figure 3- 5：The calculation of a node of ˆ' ()i iV s C V .

We choice the minimum cost of node (1()C V) to expand. Now, d1

presents the data item that has been located (11)(dVM =), and the set of data

items, d2, d3, d4, presents those not have been located (4,3,21)(dddVM =).A*

algorithm forever choices the minimum cost of
i

V to expand. We calculate the

cost of data sequence of d1 d2 (5()C V)、d1 d3 (6()C V) and d1 d4

(7()C V),the result is presented in Figure 3-5, then it expands 5V (Figure 3-6)

and 8V (Figure 3-7). In the instance, the optimal path is d1 d2 d3 d4,

and the cost is equal to 8.

 23

Figure 3- 6：Expand V5 to calculate the ˆ' ()i iV s C V .

Figure 3- 7：Expand V8 to calculate the ˆ' ()i iV s C V .

3.2.2 Our algorithm
Algorithm：A* Algorithm ('σ).

Input： 'σ - the ordering of data items in the window.

Output：An optimal data schedule(''σ).

1. initial root r;

2.Q φ← ; /* Q=Queue.

3. ()
rdM N ={φ }; () 0

rdC N = ;

4. add
rdN into Q;

14
ˆ () 0C V =

d1
d2
d3
d4

)(iVM)(iVM

d4
q3

q4
d3

(a) 8
ˆ () 2C V = (b) 9

ˆ () 2C V =

d1
d2
d3

d1
d2
d4

q3

q4

)(iVM)(iVM)(iVM

 24

5. delete
idN from Queue with Min ()

idC N ;

6. for each jd in 'σ

7. if (jd ∉ ()
idM N) then

8. new node
jdN ;

9. if
jdN exist data items belonged to ()

k
QDS q)

10. if some data items∈ ()
jdM N and some data items∈ ()

jdM N then

11. ˆ ˆ() () 1;
j jd dC N C N= +

12. () ()
j id d jM N M N d= + ;

13. ˆ() (()) ()
j j jd d dC N C P N C N= + ;

14. T=true;

15. for each
idN in Q ;

16. if (() ()
i jd dM N M N⊇ and () ()

i jd dC N C N≤) then

17. T=false;

18. abort the for loop;

19. if (() ()
i jd dM N M N⊆ and () ()

i jd dC N C N≥) then

20. delete
idN from Q ;

21. if (T) then

22. add
jdN into Q;

First, we initial the root r (
rdN), and let the queue, denoted as Q, is empty.

The root node is not placed any data item yet, that is ()
rdM N =φ , and its cost

is equal to 0, presented as () 0
rdC N = . And then

rdN is added into the Q.

Line 5, removes the node
idN with minimal cost from the Q. Lines 6 to 13

 25

explain how to create nodes according to ()
idM N . Lines 9 to 13 calculate the

cost of a new
jdN (the blow-by-blow step is shown in section 3.2.2), and we

copy the parent node 'id s ()
idM N into ()

jdM N and then append jd into ()
jdM N .

Lines 15 to 20 adjudge whether have
idN must be deleted from the Q

or
jdN has not added into the Q. Lines 16 to 18 show if () ()

i jd dM N M N⊇ and

the cost of
idN is less than the cost of

jdN (() ()
i jd dC N C N≤). Then we will

reject
jdN into the Q. For example, we assume a node

idN in the Q and

its 1, 2, 3() { }
idM N d d d= and its cost is 5. The new node

jdN and

its 3, 2() { }
jdM N d d= and its cost is 8. We will reject

jdN into the Q. Lines 19 to

20 explain how to delete the nodes that can not find optimal solution.

If () ()
i jd dM N M N⊆ and its cost is greater than the cost of

jdN (() ()
i jd dC N C N≥). We will delete

idN from the Q and then add
jdN into the Q.

For example, if a node
idN is in the Q, and its 1, 3, 2() { }

idM N d d d= and its cost

is 9. The new node
jdN has 1, 2, 3() { }

jdM N d d d=) and its cost is 5. We will

delete
idN from the Q and then add

jdN into the Q.

3.2.3 Set a range to implement A* algorithm

When a server collects clients’ query patterns, it will produce a broadcast

schedule (shown in Figure 3-8). As description in section 3.1, A* algorithm

uses the branch and bound method to reach its work. So we can predict that if

the number of data items becomes greater, it also expends more time to

estimate all possible paths in a state space. For this reason, we set a search

 26

range called window size, denoted as W (shown in Figure 3-8), and let the data

items in the scope are implemented A* algorithm until the window size

includes the last node. Notice that in order to cover data items in front W, the

Figure 3- 8：Set a window size.

shift scope, denoted as l is between 1 to W. Therefore A* algorithm gets a

broadcast schedule in a reasonable time. In order to move data items in a

proper position, we reset continuously the start point of the window denoted

as offset, p. we determine the p value between 0 to W in a random way. On the

left of p is the first group to perform A* and the other data items are enforced

A* which are according to the window size. We summarize our method as

follows：

1. Input：W, l ; /* W is the range which includes data items to run A*.

2. /* l is the window shift scope.

3. initial a data schedule;

4. repeat

5. random choose a number p; /* 0 <= p <W.

6. set the first window covers the first p data items and use A* algorithm

7. to schedule the data items;

d2

p = 3

W = 4

d3 d4 d5 d6 d7 d8 dn

 l = W / 2

d9 d10 d11d1

 27

8. repeat

9. shift right the window by l ; /* 0 <= l <W.

10. call A* (')σ algorithm to schedule the data items in the window;

11. /* 'σ is the ordering of data items in the window.

12. until the window includes the last data item;

13. until the cost converge;

 28

Chapter 4 Performance Evaluation

 In this chapter, we evaluate the performance of the A* algorithm and

compare our method with the QEM algorithm [14]. We implement the

algorithm A* and QEM using Java language. The performance metric is

considered in experiments with the total access time of all queries. (Please see

Chapter 2). We run these programs on a PC with P4 2.0 GHz micro-processor,

256MB RAM and 30GB hard disk. In our experiments, the selectivity is

denoted as S. Each query can include S data items of N (the number of data

items) at most. For example, if N = 100 and S = 2%, each query can access

100*2% data items at most. The query patterns’ access frequencies are with

two distributions：(1) Normal distribution (2) Uniform distribution.

 In our algorithm, we just calculate all possible paths which can find the

optimal solution. The cost function is described in Section 3.2.2.

4.1 Efficiency of the Various Window Sizes and Iterations

In Figure 4-1, we use 100 query patterns and S is equal to 2%. The

query patterns’ access frequencies are uniform distribution. When N are

equal to 300、400、500、700、900、1000. We observe the variation of window

sizes and iterations in the total access time.

As shown in the result, while W = 10 or W = 8, the total access time

will be converged in 200 iterations approximately. But while W = 4 or W = 6,

the total access time is converged with more iterations. In other words, if the

number of data items becomes greater and window size is smaller, the A*

 29

algorithm needs more iterations to find a good broadcast schedule.

Figure 4- 1：Total Access Time of various numbers of data items with

different window sizes and iterations. The query patterns’ access frequencies

are uniform distribution.

4.2 Efficiency of the Number of Data Items

We assume that there are 100 query patterns and the selectivity is 2%. We

set the W = 4 and l = W/2. The query patterns’ access frequencies are with a

normal distribution. We observe the variation of total access time by changing

the total number of data items (N). The results are shown in Figure 4-2.

N=1000, Q=100, S= 0.02

0

200000

400000

600000

800000

1 2 3 4 5 6 7 8 9

Iterations (Hundred)

T
o
t
a
l

A
c
c
e
s
s

T
i
m
e

w=4

w=6

w=8

w=10

(a) N=1000

N=900, Q=100, S=0.02

0

200000

400000

600000

800000

1 2 3 4 5 6 7 8 9

Iterations

T
o
t
a
l

A
c
c
e
s
s

T
i
m
e

w=4

w=6

w=8

w=10

(b) N=900

N=700, Q=100, S=0.02

0

100000

200000

300000

400000

500000

1 2 3 4 5 6 7 8 9

iterations

T
o
t
a
l

A
c
c
e
s
s
T
i
m
e

w=4

w=6

w=8

w=10

(c) N=700
N=500, Q=100, S=0.02

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6

Iterations

T
o
t
a
l

A
c
c
e
s
s

T
i
m
e

w=4

w=6

w=8

w=10

(d) N=500

N=400, Q=100, S=0.02

0

100000

200000

300000

1 2 3 4 5 6

Iterations

T
o
t
a
l

A
c
c
e
s
s

T
i
m
e

w=4

w=6

w=8

w=10

(e) N=400

N=300, Q=100, S=0.02

0

50000

100000

150000

1 2 3 4 5 6

Iterations

T
o
t
a
l

A
c
c
e
s
s

T
i
m
e

w=4

w=6

w=8

w=10

(f) N=300

 30

Normal Distribution

N = 100~500, Q = 100, S = 0.02

0

5000

10000

15000

100 200 300 400 500

Number of Data Items

T
o
t
a
l

A
c
c
e
s
s

T
i
m
e

QEM

Our approach

Figure 4- 2：Efficiency of the number of data items with normal distribution.

The improvement ratio with different data items are presented in Table

4-1. The results of A* are superior to QEM in access time. On average, our

approach yields improvement of 47.29% over QEM.

Table 4- 1：Improvement ratio with different data items with normal
distribution

Normal Distribution

of data
items QEM A* Improve (%)

100 2192 1052 108.365019
200 4462 4119 8.327263899
300 5198 5134 1.246591352
400 9740 4666 108.7441063
500 10397 9468 9.81199831

Average 47.29899577

 31

We set the W = 4 and l = W/2. The query patterns’ access frequencies are

with a uniform distribution. There are 100 query patterns and the S is 2%. We

observe the total access time variation with the numbers of data items from

100 to 500. The results are shown in Figure 4-3. A* still outperforms QEM

approach.

Uniform Distribution

N = 100~500, Q = 100, S = 0.02

0

20000

40000

60000

80000

100 200 300 400 500

Number of Data Items

T
o
t
a
l

A
c
c
e
s
s

T
i
m
e

QEM

Astar

Figure 4- 3：Efficiency of the number of data items with uniform distribution.

The improvement ratio about the change of data items are shown in

Table 4-2. The results of A* are better than QEM in access time. On average,

our approach yields improvement of 137.17% over QEM.

 32

Table 4- 2：Improvement ratio with different data items with uniform
distribution

Uniform Distribution

of data
items

QEM A* Improve (%)

100 11820 1830 545.9016
200 27800 11760 136.3946
300 42200 42080 0.285171
400 67230 65450 2.719633
500 72820 72420 0.552334

Average 137.1707

4.3 Efficiency of the Number of Query Patterns
Figure 4-4 is shown the results with various numbers of query patterns.

The numbers of query patterns are among 100 to 900. We set the W = 4 and l

= W/2. The query patterns’ access frequencies are with a normal distribution.

The number of data items is 100, and the S is 2%. A* outperforms QEM

approach.

 Normal Distribution

 N = 100, Q = 100~900, S = 0.02

0

5000

10000

15000

20000

100 200 300 400 500 600 700 800 900

Number of Queries (Q)

T
o
t
a
l

A
c
c
e
s
s

T
i
m
e

QEM

Astar

Figure 4- 4：Efficiency of the number of query patterns with normal

distribution.

 33

The improvement ratio about the change of data items are shown in

Table 4-3. The results of A* are better than QEM in access time. On average,

our approach yields improvement of 21.67% over QEM.

Table 4- 3：Improvement ratio with different number of query patterns with
normal distribution.

Normal Distribution
of queries QEM A* Improve (%)

100 2192 1021 114.6915
200 2966 2798 6.004289
300 4642 4503 3.086831
400 5989 4256 40.71898
500 6418 6110 5.040917
600 8512 7769 9.56365
700 10041 9154 9.689753
800 11571 11381 1.669449
900 14366 13734 4.601718

Average 21.67412

 Figure 4-5 is shown the results with various numbers of query patterns.

The numbers of query patterns are among 100 to 900. We set the W = 4 and l

= W/2. The query patterns’ access frequencies are with a uniform distribution.

The number of data items is 100, and the S is 2%. Our proposed approach

gives better performance than QEM algorithm.

 34

Uniform Distribution

N = 100, Q = 100~900, S = 0.02

0

20000

40000

60000

80000

100000

120000

100 200 300 400 500 600 700 800 900

Number of Queries(Q)

T
o
t
a
l

A
c
c
e
s
s

T
i
m
e

QEM

Astar

Figure 4- 5：Efficiency of the number of query patterns with uniform

distribution.

The improvement ratio with different data items are presented in Table

4-4. The results of A* are superior to QEM in access time. On average, our

approach yields improvement of 103.19% over QEM.

Table 4- 4：Improvement ratio with different number of query patterns with
uniform distribution

Uniform Distribution

of queries QEM A* Improve (%)

100 11820 1790 560.3352
200 21870 13020 67.97235
300 34220 20140 69.91063
400 45510 33960 34.0106
500 55010 40080 37.2505
600 73990 52960 39.70921
700 85360 52360 63.02521
800 96800 75850 27.6203
900 109590 85030 28.88392

Average 103.1909

 35

4.4 Efficiency of Selectivity Parameter S

 In this section, we observe the variation of selectivity in the total access

time. The results are shown in Figure 4-6.We set the W = 4 and l = W/2. The

query patterns’ access frequencies are with a uniform distribution. We use 100

data items and 500 query patterns in this experiment. The performance of A*

is better than QEM. As a query accesses more data items, our approach still

can get a good solution. Particularly, the selectivity is smaller than 3%.

Uniform Distributionud

N = 100, Q = 500, S = 0.02~0.09

0

50000

100000

150000

200000

250000

2 3 4 5 6 7 8 9

Selectivity(%)

T
o
t
a
l

A
c
c
e
s
s

T
i
m
e

QEM

Astar

Figure 4- 6：Efficiency of different selectivity.

The improvement ratio with different data items are presented in Table

4-5. The results of A* are superior to QEM in access time. On average, our

approach yields improvement of 15.95% over QEM.

 36

Table 4- 5：Improvement ratio with different selectivity with uniform

distribution

Uniform Distribution
Selectivity QEM A* Improve (%)

2 55010 39670 38.66901941
3 100400 85470 17.46811747
4 131290 118820 10.49486618
5 153570 139380 10.18080069
6 180210 158240 13.88397371
7 191210 169470 12.82822919
8 203810 185640 9.787761258
9 226040 197750 14.30594185

Average 15.95233872

 37

Chapter 5 Conclusion

In this paper, we have proposed an A* method for the data broadcast

problem which mobile clients’ access more than one data items. A* uses the

branch and bound method to reach its work. We also set a search range and let

the data items in the scope are implemented A* in a reasonable time. We

compare our method with QEM [14]. The proposed A* strategy is shown to

generally outperform QEM.

In the future we will expend this work on multi channels environment

and data items with non-uniform lengths.

 38

References

[1] Acharya, S., Alonso, R., Franklin, M., and Zdonik, S., “Broadcast Disks: Data
Management for Asymmetric Communication Environments,” Proceedings of
ACM SIGMOD International Conference, pp. 199 – 210, 1995.

[2] Acharya, S., Franklin, M., and Zdonik, S., “Disseminating Updates on
Broadcast Disks,” Proceedings of Very Large Data Bases Conference, pp.
354 – 365, 1996.

[3] Acharya, S., Franklin, M., and Zdonik. S., “Dissemination-based Data
Delivery Using Broadcast Disks, ” Proceedings of IEEE Personal
Communications, volume 2, issue 6, pp. 50-60, 1995.

[4] Aksoy, D., and Franklin, M., “R x W: A Scheduling Approach for Large-Scale
On-Demand Data Broadcast, ” Proceedings of IEEE Transactions on
Networking, volume 7, issue 6, pp. 846-860, 1999.

[5] Asano, T., “An Optimal Gate Placement Algorithm for MOS One-Dissensional
Arrays,” Journal Digital System, 1982

[6] Bar-Noy, A. and Shilo, Y., “Optimal broadcasting of two files over an
asymmetric channel,” Proceedings of IEEE INFOCOM Conference, volume 1,
pp. 267-274, 1999.

[7] Baruah, S., Bestavros, A., “ Real-Time Mutable Broadcast Disks, ”
Proceedings of RTDB, pp. 3-21, 1997.

[8] Buttazzo, G. and Sensini, F., “Optimal deadline assignment for scheduling soft
aperiodic tasks in hard real-time environments,” IEEE Transactions on
Computers, volume 48, issue 10, pp. 1035-1052, 1999.

[9] Cai, H., “A Data Path Layout Assembler for High Performance DSP Chips,”
DAC, pp. 306-311, 1990.

[10] Cheng, M., Sun, J., Min, M., and Du, Lee, “Energy-efficient Broadcast and
Multicast Routing in Ad Hoc Wireless Networks,” Proceedings of IEEE
International Conference on Performance, Computing, and Communications,
pp. 87-94, 2003.

[11] Cho, J., Oh, S., Kim, J., and Lee, J., “Neighbor Caching in Multi-Hop Wireless
Ad Hoc Networks,” IEEE Transactions on Communications Letters, volume 7,
issue 11, pp. 525-527, 2003.

[12] Chow, C. Y., Leong, H.V., and Chan, A., “Cache signatures for peer-to-peer
cooperative caching in mobile environments,”Proceedings of IEEE 18th
International Conference on Advanced Information Networking and
Applications, volume 1, pp. 96-101, 2004.

[13] Chung, Y. D. and Kim, M. H., “An Index Replication Scheme for Wireless
Data Broadcasting,” Journal of ACM Systems and Software, volume 51, issue
3, pp. 191-199, 2000.

[14] Chung, Y. D. and Kin M. H., “Effective Data Placement for Wireless
Broadcast,” Proceedings of ACM Distributed and Parallel Database, volume
9, issue 2, pp. 133-150, 2001.

[15] Chung, Y. D., Bang, S. H., and Kim, M. H., “An efficient broadcast data

 39

clustering method for multipoint queries in wireless in formation systems,”The
Journal of ACM Systems and Software, volume 64, issue 3, pp. 173-181, 2002.

[16] Date, C. J., “An Introduction to Database Systems, 7th Edition,” Addison
Wesley, 2000.

[17] Demir, O.E., and Aksoy, D., “Energy-efficient broadcast-based event update
dissemination, ” Proceedings of IEEE International Conference on
Performance, Computing, and Communications, pp. 477-482, 2004.

[18] Dykeman, H. D., Ammar, M. H., and Wong, J. W., “Scheduling algorithms for
videotext systems under broadcast delivery,” International Conference on
Communications, pp. 1947-1951, 1996.

[19] Etsuko, Y., Takahiro, H., Masahiko T., and Shojiro N., “Scheduling and
caching strategies for broadcasting correlated data,”Proceedings of ACM
symposium on Applied computing, pp. 504-510, 2001.

[20] Fang, Q., Vrbsky V., Dang Y., and Ni, W., “A Pull-Based Broadcast
Algorithm that Considers Timing Constraints, ” Proceedings of IEEE
International Conference on Parallel Processing Workshops, pp. 46-53, 2004.

[21] Gunes, M., “Routing Algorithms for Mobile Multi-Hop Ad-Hoc Networks,”
Citeseer of International Workshop NGNT, pp. 10-24, 2004.

[22] Hsu, C. H., Lee, G., and Chen, A.L.P., “Index and Data Allocation on Multiple
Broadcast Channels Considering Data Access Frequencies,” Proceedings of
IEEE the Third International Conference on Mobile Data Management, pp.
87-93, 2002.

[23] Hung, J. J., and Leu, Y., “ Efficient index caching schemes for data
broadcasting in mobile computing environments,”Proceedings of IEEE 14th
International Workshop on Database and Expert Systems Applications, pp.
139-143, 2003.

[24] Imielinski, T., Viswanathan, S., and Badrinath, B. R., “ Data on Air:
Organization and Access,” IEEE Transaction on Knowledge and Data
Engineering, volume 9, issue 3, pp. 353-372, 1997.

[25] Imielinski, T., Viswanathan, S., and Badrinath, B. R., “Energy Efficient
Indexing on Air,” Proceedings of ACM SIGMOD International Conference,
volume 23, pp. 25-36, 1994.

[26] Jin, Seung., and Jae, Woo., and Joo, Young., “Efficient Broadcast Schemes with
Transmission Power Control in Mobile Ad Hoc Networks,” Proceedings of IEEE
Communications Society, volume 7, pp. 3859 – 3863, 2004.

[27] Lam, K. Y., Chan, E., and Yuen, C., “Approaches for broadcasting temporal data
in mobile computing systems,” The journal of ACM Systems and Software,
volume 51, issue 3, pp. 175-189, 2000.

[28] Lee, G., Lo, S. C. and Chen, A. L. P., “Data Allocation on Wireless Broadcast
Channels for Efficient Query Processing,” IEEE Transaction on Computers,
volume 51, issue 10, pp. 1237-1252, 2002.

[29] Lee, S. J., Kitsuregawa, M., and Hwang, C. S., “Efficient processing of
wireless read-only transactions in data broadcast,” Proceedings of IEEE
Research Issues in Data Engineering: Engineering E-Commerce/E-Business
Systems, pp. 101-111, 2002.

 40

[30] Lee, G., Yeh, M. S., Lo, S. C., and Chen, A. L. P.,“A Strategy for Efficient
Access of Multiple Data Items in Mobile Environments,”Proceedings of IEEE
Third International Conference on Mobile Data Management, pp. 71-78, 2002.

[31] Lim, S. H., and Kim, J.H., “Real-time broadcast algorithm for mobile
computing,”The Journal of ACM Systems and Software, volume 69, issue 1-2,
pp. 173-181, 2004.

[32] Lo, S. C., and Chen, A.L.P., “Optimal index and data allocation in multiple
broadcast channels,”Proceedings of IEEE 16th International Conference on
Data Engineering, pp. 293-302, 2000.

[33] Ni,W., Fang, Q., and Vrbsky, V.,“A Lazy Data Request Approach for
On-demand Data Broadcasting,”Proceedings of IEEE International Conference
on Distributed Computing Systems Workshops, pp. 790-796, 2003.

[34] Peng, W. C. and Chen, M. S., “Dynamic Generation of Data Broadcast
Programs for a Broadcast Disk Array in a Mobile Computing Environment,”
Proceedings of ACM International Conference on Information and Knowledge
Management, pp. 38-45, 2000.

[35] Peng, W. C., and Chen, M. S,, “Developing Data Allocation Schemes by
Incremental Mining of User Moving Patterns in a Mobile Computing System,”
IEEE Transactions on Knowledge and Data Engineering, volume 15, issue 1,
pp. 70-85, 2003.

[36] Peng, W. C., Huang, J. L., and Chen M. S., “Dynamic Leveling: Adaptive Data
Broadcasting in Mobile Computing Environment,” ACM/Kluwer Mobile
Networks and Applications, pp. 355-364, 2003.

[37] Ramanaiah, O.B.V., and Mohanty, H., “NICD: a novel indexless wireless
on-demand data broadcast algorithm,”Proceedings of IEEE International
Conference on Information Technology: Coding and Computing, volume 2, pp.
730-734, 2004.

[38] Saygin, Y., and Ulusoy, O., “ Exploiting data mining techniques for
broadcasting data in mobile computing environments,” IEEE Transactions on
Knowledge and Data Engineering, volume 14, issue 6, pp. 1387-1399, 2002.

[39] Sun, W., Shi W., Shi, B., and Yu, Y., “A Cost-Efficient Scheduling Algorithm
of On-Demand Broadcasts,” Proceedings of ACM Wireless Networks, volume
9, issue 3, pp. 239-247, 2003.

[40] Tan, K. and Yu, J. X., “Generating Broadcast Programs that Support Range
Queries,” IEEE Transactions on Knowledge and Data Engineering, volume
10, issue 4, pp. 668-672, 1998.

[41] Thomas H. C., Charles E. L., and Ronald L. R., “Introduction to algorithms,”
McGraw-Hill, 2001.

[42] Waluyo, A.B., Srinivasan, B., and Taniar, D., “A Taxonomy of Broadcast
Indexing Schemes for Multi Channel Data Dissemination in Mobile Database,”
Proceedings of IEEE the 18th International Conference on Advanced
Information Networking and Application, volume 1, pp. 213-218, 2004.

[43] Waluyo, A.B., Srinivasan, B., and Taniar, D., “Global Indexing Scheme for
Location-Dependent Queries in Multi Channels Mobile Broadcast
Environment,” Proceedings of IEEE 19th International Conference on Advanced

 41

Information Networking and Applications, volume 1, pp. 1011-1016, 2005.
[44] Wu, Y., and Cao, G., “Stretch-Optimal Scheduling for On-Demand Data

Broadcasts,” Proceedings of IEEE International Conference on Computer
Communications and Networks, pp. 500-504, 2001.

[45] Xu, Ji., Xu, Jianliang., and Li, Bo., “A Cooperative Caching Algorithm for
Multi-Cell Data Broadcasting,” Proceedings of IEEE Communications Society,
volume 7, pp. 4072-4076, 2004.

[46] Yajima, E., Hara, T., Tsukamoto, M., and Nishio, S., “Scheduling and Caching
Strategies for broadcasting Correlated Data,” Proceedings of ACM Symposium
on Applied Computing, pp. 504-510, 2001.

[47] Zhang, J. and Gruenwald, L., “Optimizing Data Placement Over Wireless
Broadcast Channel For Multi-Dimensional Range Query Processing, ”
Proceedings of the 2004 IEEE International Conference on Mobile Data
Management, pp. 256-265, 2004.

