
European Journal of Operational Research 170 (2006) 72–90
Production, Manufacturing and Logistics

A fuzzy stochastic single-period model for cash management

Jing-Shing Yao a, Miao-Sheng Chen b, Huei-Fu Lu c,d,*

a Department of Mathematics, National Taiwan University, Taipei 106, Taiwan, ROC
b Graduate Institute of Management, Nan Hua University, Dalin, Chiayi 622, Taiwan, ROC

c Graduate Institute of Management Sciences, Tamkang University, Taipei 251, Taiwan, ROC
d Department of International Business, De Lin Institute of Technology, Taipei 236, Taiwan, ROC

Received 20 March 2003; accepted 18 June 2004
Available online 13 September 2004
Abstract

The major purpose of this paper is to apply a stochastic single-period inventory management approach to analyze
optimal cash management policies with fuzzy cash demand based on fuzzy integral method so that total cost is mini-
mized. We will find that, after defuzzification, the cash-raising amounts and the total costs between the fuzzy case and
the crisp case are slightly different when the variation of cash demand is small. As a result, we point out that the fuzzy
stochastic single-period model is one extension of the crisp models. In any case, one may conclude that a conscientious
analysis in fuzzy mathematics like that presented in this paper provides a financial decision maker with a deeper insight
into the more real cash management problem.
� 2004 Elsevier B.V. All rights reserved.

Keywords: Fuzzy sets; Stochastic single-period model; Cash management; Fuzzy integral; Signed distance method
1. Introduction

In real business environments, most financial managers have to determine how much cash to raise for
normal day-to-day disbursement or protecting against unanticipated variations from budgeted cash flows
in a business cycle, and furthermore to achieve the objective of minimizing expected total cost. Because va-
rious types of uncertainties and imprecision are inherent in the environment of cash management, they are
classically modeled using the probability theory and therefore unpredictable cash demand is usually re-
garded as a random variable (Dran) with a p.d.f. (f (D)), where f (D) may be estimated by past statistical
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data. In realistic situations, however, such estimation is often biased. For example, if big news or shocks
occur in the financial market, cash demand for the next business cycle will show an unexpected fluctuation.
Therefore, facing the dilemma of shortage or excess, the financial manager must adjust cash balances in
accordance with real cash demand and reduce cash tied up unnecessarily in the system without diminishing
profit or increasing risk.

The problem of managing cash balance is similar to that of managing physical inventory. Baumol (1952)
first applied the EOQ model of inventory management in establishing a target cash balance. However, the
Baumol model oversimplified the problem. Most importantly, it assumes that cash inflows and outflows are
relatively stable and predictable, and it does not take into account any seasonal or cyclical trends. In the
literature after Baumol, cash flow is usually regarded as a prescribed constant or a stochastic variable with
time or raising quantity dependence (Tobin, 1958; Miller and Orr, 1966; Marquis and Witte, 1989). Recent
studies relating certain storage systems to cash flow management have attracted much attention. Harrison
et al. (1983) modeled the cash fund as a Brownian motion reflected at the origin. Harrison and Taksar
(1983) considered impulse control policies: When the cash fund is too large, the controller may choose
to convert some of his cash into securities; when the amount of cash decreases below some limit level, secu-
rities are reconverted into cash. Browne (1995) considered a firm with an uncontrollable cash flow and the
possibility of investing in risky stock. In the study of Milne and Robertson (1996), a firm�s cash flow is
determined by a diffusion process and faces liquidation if the internal cash balance falls below some thresh-
old value. Asmussen and Taksar (1997) and Asmussen and Perry (1998) provided jump diffusion models
motivated by finance and general storage applications. Perry (1997) also extended the model of Harrison
et al. (1983) by taking into account holding cost and unsatisfied demand cost functions to consider drift
control for a two-sided reflected Brownian motion. Nevertheless, so far as we know, the optimal cash man-
agement policy for business using the concept of fuzzy cash demand has not been considered.

The cash management problem discussed in this paper is closely related to the single-period stochastic
inventory, or ‘‘newsvendor,’’ problem, which is a standard problem in the literature of inventory (Johnson
and Montgomery, 1974; Hamidi-Noori and Bell, 1982). In such a problem, the management has to set the
inventory at the level in which the value of the cumulative distribution function is equal to the cost/price
ratio. Differing from previous studies, this paper attempts to develop a fuzzy model that takes the vague
cash demand into account in order to provide a useful starting point for establishing a target cash balance
in a fuzzy environment. We apply a stochastic single-period inventory management approach to analyze
optimal cash balance with the considerations of fuzzy information and random components for cash de-
mand (i.e. hybrid cash demand) so that total cost is minimized.

The rest of this paper is organized as follows. Section 2 states the preliminaries where we define fuzzy
integral in Property 4, and employ the signed distance method similar to Yao and Wu (2000) to formulate
the single-period model.

In Section 3, fuzzy integral method is employed to establish our fuzzy stochastic single-period model
with regard to the cash management issue. After defuzzification, we can obtain the estimated total cost
in the fuzzy sense in Formula 1. In Section 3.4, we estimate the fuzzy total cost by using exponential dis-
tribution as an example of Formula 1 shown in Theorems 2 and 3. In Section 4, we compare the result ob-
tained from the fuzzy case in Section 3.4 to that of the crisp case with numerical operations. Finally, some
characteristics of this model are discussed in Section 5 and concluding remarks are in Section 6.
2. Preliminaries

In order to apply the signed distance and the fuzzy integral method to formulate our problem, the fol-
lowing definitions are provided with some relevant operations.
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Definition 1. A fuzzy set eA defined on R ¼ ð�1;1Þ, which has the membership function,

l~AðxÞ ¼
a; a 6 x 6 b;
0; otherwise;

�
is called a-level fuzzy interval and denoted by ~A ¼ ½a; b; a�, where a < b.

Definition 2. By Pu and Liu (1980), a fuzzy set ~a is defined on R, which has the membership function,

leaðxÞ ¼ 1; x ¼ a;
0; x 6¼ a;

�
is called a fuzzy point.

Let Fs be the family of fuzzy sets on R, for each eC 2 F s, we have a a-level set
CðaÞ ¼ fxjleC ðxÞ P ag ¼ ½ClðaÞ;CrðaÞ� ð0 6 a 6 1Þ. For each a 2 [0,1], Cl(a) and Cr(a) are the left and right
end points of a-level set C(a) separately and both of Cl(a), Cr(a) exit and are continuous over [0,1].

For eC 2 F s, by decomposition theory and Definition 1, we have
eC ¼
[

06a61

aICðaÞ ¼
[

06a61

½C1ðaÞ;CrðaÞ; a�; ð1Þ
where IC(a) is a characteristic function of C(a).
Similar to Yao and Wu (2000), we consider the signed distance and ranking of eCð2 F sÞ, we provide Def-

inition 3 as follows.

Definition 3. For a, 0 2 R, we define the signed distance of a measured from the origin 0 by d0(a, 0) = a.

Remark 1. The interpretation of Definition 3 is: If a > 0, distance of a from 0 is d0(a, 0) = a, and if a < 0,
distance of a from 0 is �d0(a, 0) = �a. Thus, d0(a, 0) = a is called the signed distance of a from origin 0.

The a-level set eCð2 F sÞ is denoted by C(a) = [Cl(a),Cr(a)]. From Definition 3, the signed distances from
left and right end points Cl(a), Cr(a) to origin 0 are defined by d0(Cl(a),0) = Cl(a), and d0(Cr(a),0) = Cr(a),
respectively. Therefore, the signed distance of the closed interval [Cl(a),Cr(a)] from origin 0 can be defined
by d0ð½ClðaÞ;CrðaÞ�; 0Þ ¼ 1

2
½ClðaÞ þ CrðaÞ�.

For each a 2 [0, 1], [Cl(a),Cr(a)] M [Cl(a),Cr(a);a] is one-to-one onto mapping, so the signed distance of
[Cl(a),Cr(a);a] from ~0 is defined by
dð½ClðaÞ;CrðaÞ; a�; ~0Þ ¼ d0ð½ClðaÞ;CrðaÞ�; 0Þ ¼
1

2
½ClðaÞ þ CrðaÞ�: ð2Þ
Thus, for each eC 2 F s (06a61), Eq. (2) is a function of a and continuous over [0,1], we can obtain the
integral mean value of the signed distance as
Z 1

0

dð½ClðaÞCrðaÞ; a�; ~0Þda ¼ 1

2

Z 1

0

ðClðaÞ þ CrðaÞÞda: ð3Þ
According to (1) and (3), we have the following definitions of the signed distance and the ranking of
fuzzy sets on Fs.

Definition 4. For each eC 2 F s, the signed distance of eC from ~0 is defined by
dðeC ; ~0Þ ¼ 1

2

Z 1

0

ðClðaÞ þ CrðaÞÞda:
Definition 5. For eC , eD 2 F s, define the ranking on Fs by
eC � eD iff dðeC ; ~0Þ > dðeD; ~0Þ;eC � eD iff dðeC ; ~0Þ ¼ dðeD; ~0Þ:
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Using Definition 5 and the order relations >, = on R, we have the following two properties:

Property 1. For eA, eB, eC 2 Fs, the order relations �, � on Fs satisfy the following axioms: (1) eA �� eA; (2) ifeA �� eB, eB �� eA, then eA � eB; (3) if eA �� eB, eB �� C, then eA �� eC .

Property 2. For eA, eB 2 Fs, the order relations �, � satisfy the law of trichotomy. Namely, one and only one of

the three relations of eA � eB, eA � eB, eB � eA must hold.

From Properties 1 and 2, we know that the order relations �, � on Fs are linear order.

Definition 6. For eA, eB 2 F s, define the metric q by
qðeA; eBÞ ¼ jdðeA; ~0Þ � dðeB; ~0Þj ¼ 1

2

Z 1

0

ðA1ðaÞ þ ArðaÞ � BlðaÞ � BrðaÞÞdx
���� ����:
Property 3. For eA, eB, eC 2 eF s, metric q satisfies the following three metric axioms: (1) qðeA; eBÞ ¼ O iff eA � eB;
(2) qðeA; eBÞ ¼ qðeB; eAÞ; (3) qðeA; eBÞ þ qðeB; eCÞ P qðeA; eCÞ.

Proof. By Definitions 4–6, Property 3 can be proved. h

Definition 7. If eAðkPkÞ (with respect to norm kPk), eB 2 F s and for each e > 0, there exist d > 0, when
kPk < d, qðeAðkPkÞ; eBÞ < e, then denoted by limkPk!0

eAðkPkÞ ¼ eB.
In order to infer the appropriate fuzzy calculus, we refer to the Theorem 3.2 of Goetschel and Voxman

(1986) and rearrange it as the following Theorem 1:

Theorem 1. If the fuzzy function f : [c,d] ! F is continuous with respect to the metric D1, where
D1ðfjðaðrÞ; bðrÞ; rÞj 0 6 r 6 1g; fjðpðrÞ; qðrÞ; rÞj 0 6 r 6 1gÞ
¼ supðmaxfðjðaðrÞ � pðrÞj; jbðrÞ � qðrÞjÞj 0 6 r 6 1gÞ;
and if for each x 2 [c,d], f(x) has the parametric representation given by {j(a(r,x), b(r,x), r)j 06 r61}, then

fuzzy integral
R d
c f ðxÞdx exists and belongs to F, that is parameterized byR d

c aðr; xÞdx;
R d
c bðr; xÞdx; r

� �
0 6 r 6 1

n o
, where F is the family of fuzzy numbers.

The calculus of Theorem 1 is to utilize the operational analysis of crisp two-dimensional vector. As to the
reasons why it cannot be appropriately treated for fuzzy operation, we will discuss in Section 5.2.

As above-mentioned, the a-level set of a fuzzy set eB on Fs is denoted by B(a) = [Bl(a),Br(a)], for each
a 2 [0, 1], let Bl(a) and Br(a) be the functions of x denoted by Bl(a) = bl(a,x) and Br(a) = br(a,x) separately
(see Section 3.3, for eB ¼ eD and x = D). According to decomposition theory, we obtaineB ¼

S
06a61½blða; xÞ; brða; xÞ; a�, which has the different present form from Goetschel and Voxman (1986)

but there is the same mean.
Let F �

s be the family of fuzzy set eB on Fs. On F �
s , for any c < d (d can be attained to +1) and for each

a 2 [0, 1],
R d
c BlðaÞdx ¼

R d
c blða; xÞdx and

R d
c BrðaÞdx ¼

R d
c brða; xÞdx exist. Obviously, F �

s � F s.

Let eB ¼
S

06a61½b1ða; xÞ; brða; xÞ; a� be a fuzzy number and f ðeBÞ 2 F �
s , by extension principle, the mem-

bership function of f ðeBÞ can be denoted by l
f ðeBÞðzÞ ¼ supx2f�1ðzÞleBðxÞ and its a-level set is denoted by

f ðeBÞðaÞ ¼ ½f ðeBÞlðaÞ, f ðeBÞrðaÞ�, for each a 2 [0,1], let both f ðeBÞlðaÞ and f ðeBÞrðaÞ be the functions of x de-

noted by f ðeBÞlðaÞ ¼ aða; xÞ and f ðeBÞrðaÞ ¼ bða; xÞ, respectively. From the property of F �
s , for any c < d (d

can be attained to +1) and for each a 2 [0, 1],
R d
c f ðeBÞlðaÞdx ¼ R d

c aða; xÞdx and
R d
c f ðeBÞrðaÞdx ¼R d

c bða; xÞdx exist. Since F �
S � F s, according to the property of Fs, we know that for each x 2 [c,d],
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a(a,x) and b(a,x) exist and continuous with respect to a 2 [0, 1]. By decomposition theory, we

obtain f ðeBÞ ¼ S06a61½aða; xÞ; bða; xÞ; a�, and for each n 2 [c,d], the fuzzy set ~f ðeBÞðnÞ defined as
~f ðeBÞðnÞ ¼ S06a61½aða; nÞ; bða; nÞ; a�.

Let P = {x0,x1, . . .,xn} be a partition of [c,d] and Di = xi�xi�1 > 0, i = 1,2, . . . ,n. For each ni 2 [xi�1,xi],
i = 1, 2, . . .,n, we can obtain the fuzzy sets as ~f ðeBÞðniÞ ¼ S06a61½aða; niÞ; bða; niÞ; a�, i = 1,2, . . .,n. After-
ward, for each i 2 {1, 2, . . .,n}, a(a, ni) and b(a, ni) are continuous with respect to a 2 [0,1], all of the a-level
sets [a(a, ni),b(a, ni)] of ~f ðeBÞðniÞ exist and ~f ðeBÞni 2 F s, i = 1, 2, . . . ,n. Since Di > 0 and let the fuzzy operator
‘‘(+)’’ represented by ‘‘+’’, we obtain
Xn

i¼1

Di
~f ðeBÞðniÞ ¼ [

06a61

Xn
i¼1

aða; niÞDi;
Xn
i¼1

bða; niÞDi; a

" #
2 F s; i ¼ 1; 2; . . . ; n:
Let eF 1 ¼
S

06a61½
R c
d aða; xÞdx;

R d
c bða; xÞdx; a� and eF I 2 F s, because f ðeBÞ 2 F �

s , it indicates that for each

a2[0, 1], both
R d
c aða; xÞdx and

R d
c bða; xÞdx exist.

According to the definition of crisp definite integral, we have
R d
c aða; xÞdx ¼ limkPk!0

Pn
i¼1aða; niÞDi,

and
R d
c bða; xÞdx ¼ limkPk!0

Pn
i¼1bða; niÞDi, where norm kPk ¼ max16i6nDi. For each a 2 [0, 1], let

P = {x0,x1, . . .,xn}, provide the positive Di = xi�xi�1, i = 1, 2, . . .,n, and for each e > 0, there exist
dj(a) > 0, j = 1,2, such that the following equations hold:
kPk < d1ðaÞ;
Xn
i¼1

aða; niÞDi �
Z d

c
aða; xÞdx

�����
����� < e; ð4Þ

kPk < d2ðaÞ;
Xn
i¼1

bða; niÞDi �
Z d

c
bða; xÞdx

�����
����� < e: ð5Þ
Let dj = inf06a61d(a), j = 1,2. If dj = 0 then 0 < max16i6nDi = kPk6 inf06a61dj(a) = 0. At the time only
max16i6nDi = 0 satisfies the above condition. Namely, Di = 0 for i = 1, 2, . . .,n, but that is nonsensical.
Thus, dj > 0, j = 1,2, must hold. Now let d = min(d1,d2) > 0, then we know that for each a2[0, 1] and for
each e > 0, there exist d > 0, such that if P = {x0,x1, . . .,xn} with kPk < d, then (4) and (5) hold.

Therefore, when kPk < d and by Definition 6,
q
Xn
i¼1

Di
~f ðeBÞðniÞ; eF I

 !
¼ 1

2

Z 1

0

Xn
i¼1

aða; niÞDi þ
Xn
i¼1

bða; niÞDi �
Z d

c
aða; xÞdx�

Z d

c
bða; xÞdx

" #
da

�����
�����

6
1

2

Z 1

0

Xn
i¼1

aða; niÞDi �
Z d

c
aða; xÞdx

�����
�����da

þ 1

2

Z 1

0

Xn
i¼1

bða; niÞDi �
Z d

c
bða; xÞdx

�����
�����da < e:
Finally, by Definition 7, we have limkPk!0

Pn
i¼1

~f ðeBÞðniÞDi ¼
S

06a61½
R d
c aða; xÞdx,

R d
c bða; xÞdx; a� and em-

ploy that to define the fuzzy integral
R d
c f ðeBÞdeB as Property 4.

Property 4. If f ðeBÞ ¼ S06a61½aða; xÞ; bða; xÞ; a� 2 F �
s , where f ðeBÞlðaÞ ¼ aða; xÞ, f ðeBÞrðaÞ ¼ bða; xÞ, thenR d

c f ðeBÞdeB ¼
S

06a61

R d
c aða; xÞdx;

R d
c bða; xÞdx; a

h i
.

[Note 1. The reason we adopt the metric q of Definition 6 is alluded to Section 5.2.]
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3. Constructing a fuzzy stochastic single-period cash management model

3.1. Crisp case of stochastic single-period cash management model

Before developing the fuzzy stochastic single-period model, we first briefly describe the crisp case pro-
posed by Johnson and Montgomery (1974). We then apply the model to determine the optimal cash-raising
level, say R*. The model describes the cash-raising process, in which the financial manager has to decide
how much cash should be raised for a single period under uncertain demand and when the objective is
to minimize expected total cost. Now the expected total cost in the crisp model can be expressed as the
sum of the raising cost, the expected holding cost and the expected shortage or penalty cost that is given by
EðRÞ ¼ CðR� IÞ þ H
Z R

0

ðR� DÞf ðDÞdDþ V
Z 1

R
ðD� RÞf ðDÞdD

¼ aþ HR
Z R

0

f ðDÞdD� H
Z R

0

gðDÞdDþ V
Z 1

R
gðDÞdD� VR

Z 1

R
f ðDÞdD; ð6Þ
where a = C(R � I) and g(D) = Df(D), C = raising cost per unit cash balance, I = amount of net cash in-
flow on hand before the raising decision at the start of the business cycle, R = amount of cash raised by
selling marketable securities or by borrowing, which is a decision variable, D = amount of cash demand
for disbursement or transaction during a business cycle,
Dran is a random variable with p:d:f : f ðDÞ;

H = holding cost per unit cash balance at the end of the cycle (i.e. opportunity cost); V = penalty cost or
cost of avoiding a shortage per unit cash balance (VPCP0).

Once the optimal cash-raising level (R*) is determined, the amount of cash balance at the start of busi-
ness cycle will be computed by Max(R* � I, 0).

3.2. Hybrid data of cash demand during a business cycle

In this section, we propose the legitimation of using ‘‘hybrid data’’ to describe the uncertain cash de-
mand. Kaufmann and Gupta (1991) indicated that the components of hybrid data are not homogeneous
but are a mixture of random components and fuzzy information. When Saade (1994) applied their concept
to consider a fuzzy hypotheses testing problem with hybrid data, he postulated two hypotheses: null
hypothesis H 1 : r ¼ ~Aþ n, and alternative hypothesis. H 2 : r ¼ eB þ n, where ~A, ~B are fuzzy sets and n is
a random component. He then tested them according to the value of the observable r. To give an example,
when a tax authority wants to survey the yearly average operating income for nationwide commercial firms,
they usually use a random sampling method to obtain the sample data. The collection of the statistical data
is based on the past accounting information provided by the firms. However, real operating incomes of
firms change frequently and such statistical data should be an estimated value. In other words, the real
operating income should be in the vicinity of the estimated value that it is provided with the fuzzy charac-
teristics. Meanwhile, such data would possess random characteristics since it is a consequence of random
sampling. Namely, the statistical data provided with both characteristics of fuzzy and random are so-called
hybrid data.

As the notation ( ) of crisp case mentioned in Section 3.1, D is the real amount of cash demand dur-
ing a business cycle and Dran is a random variable with p.d.f. f(D), the statistical data of random variable
Dran means the amount of cash demand (D) during a business cycle, and Dran will be set beforehand as D at
the beginning of new business cycle for disbursement or transaction. However, the cash demand in a whole
business cycle usually varies with the uncertainty of the financial environment. The real amount of cash
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demand is not necessarily equal to D at the end of business cycle but may vary during the interval
[D � D1,D + D2], where 0 < D1 < D, D2 > 0, and D1, D2 may be appropriately determined by the financial
manager. Therefore, from the corresponding interval [D � D1,D + D2], we can consider the following tri-
angular fuzzy number:
eD ¼ ðD� D1;D;Dþ D2Þ: ð7Þ
And the membership function of eD is,
leDðxÞ ¼
x�DþD1

D1
; D� D1 6 x 6 D;

DþD2�x
D2

; D 6 x 6 Dþ D2;

0; otherwise;

8><>: ð8Þ
where 0 < D1 < D, 0 < D2.
Furthermore, considering the random variable Dran in notation ( ), the amount of cash demand dur-

ing a business cycle could be regarded as hybrid data, which is the mixed data of random components and
fuzzy information.

3.3. Estimate total cost based on fuzzy integral with fuzzy probability distribution f ðeDÞ and fuzzy cash

demand eD
In Section 3.2, since the amount of cash demand during a business cycle may be regarded as hybrid data

with random components and fuzzy information, according to the characteristic of fuzzy information of
hybrid data and by (7), D is fuzzified as a triangular fuzzy number eD ¼ ðD� D1;D;Dþ D2Þ, where
0 < D1 < D, 0 < D2, and the variations (i.e. D1 and D2) can be appropriately determined by the financial
manager. The membership function of eD is therefore denoted by (8). On the other hand, according to
the characteristic of random components of hybrid data, we can use eD to fuzzify the cash demand D of
p.d.f. f(D) and therefore obtain a fuzzy set f ðeDÞ. Then, using signed distance to defuzzify the fuzzy set
f ðeDÞ, we can obtain the p.d.f. of Dran in the fuzzy sense (see Remark 4). We employ the extension principle
to find its membership function l

f ðeDÞðzÞ. We also fuzzify g(D) as gðeDÞ ¼ eDð�Þf ðeDÞ. Thus from (6), the fuzzy
total cost for a fuzzy stochastic single-period model is given by
eEðRÞ ¼ ~aðþÞ HR
Z R

0

f ðeDÞdeD� �
ð�Þ H

Z R

0

gðeDÞdeD� �
ðþÞ V

Z 1

R
gðeDÞdeD� �

ð�Þ VR
Z 1

R
f ðeDÞdeD� �

;

ð9Þ

where

R R
0 f ðeDÞdeD,

R R
0 gðeDÞdeD,

R1
R gðeDÞdeD, and

R1
R dðeDÞdeD are the fuzzy integrals in Property 4.

The a-cut of eD is denoted by D(a) = [D1(a),Dr(a)], 06a61, where Dl(a) = D � (1 � a)D1(> 0) and
Dr(a) = D + (1 � a)D2( > 0) are the left and right end points of a-cut respectively. By the operation of
two crisp intervals proposed by Kaufmann and Gupta (1991):

If a < b and p < q, then
½a; b� þ ½p; q� ¼ ½aþ p; bþ q�; ½a; b� � ½p; q� ¼ ½a� q; b� p�; k½a; b� ¼
½ka; kb�; if k P 0;

½kb; ka�; if k 6 0:

�

[a,a] represents a point ‘‘a’’. If 06a<b and 06p < g, then
½a; b� � ½p; q� ¼ ½ap; bq�: ð10Þ

The a-cut of f ðeDÞ and gðeDÞ can be expressed as
f ðeDÞðaÞ ¼ fzjl
f ðeDÞðzÞ P ag ¼ ½f ðeDÞlðaÞ; f ðeDÞrðaÞ�;
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and
gðeDÞðaÞ ¼ ½gðeDÞlðaÞ; gðeDÞrðaÞ� ¼ ½DlðaÞ;DrðaÞ� � ½f ðeDÞlðaÞ; f ðeDÞrðaÞ�:

From Property 4, we have the a-cut of fuzzy integrals

R R
0
f ðeDÞdeD,

R R
0
gðeDÞdeD,

R1
R f ðeDÞdeD, andR1

R gðeDÞdeD as follows:
Z R

0

f ðeDÞdeD� �
ðaÞ ¼

Z R

0

f ðeDÞlðaÞdD;
Z R

0

f ðeDÞrðaÞdD
� �

;Z R

0

gðeDÞdeD� �
ðaÞ ¼

Z R

0

gðeDÞlðaÞdD;
Z R

0

gðeDÞrðaÞdD
� �

;Z 1

R
f ðeDÞdeD� �

ðaÞ ¼
Z 1

R
f ðeDÞlðaÞdD;

Z 1

R
f ðeDÞrðaÞdD

� �
;Z 1

R
gðeDÞdeD� �

ðaÞ ¼
Z 1

R
gðeDÞlðaÞdD;

Z 1

R
gðeDÞrðaÞdD

� �
; where 0 6 a 6 1:
By decomposition theory, fuzzy total cost (9) becomes
eEðRÞ ¼ [
06a61

½eEðRÞlðaÞ; eEðRÞrðaÞ; a�; ð11Þ
where
eEðRÞlðaÞ ¼ CðR� IÞ þ HR
Z R

0

f ðeDÞlðaÞdD� H
Z R

0

gðeDÞrðaÞdDþ V
Z 1

R
gðeDÞlðaÞdD� VR

	
Z 1

R
f ðeDÞrðaÞdD; ð12Þ
and
eEðRÞrðaÞ ¼ CðR� IÞ þ HR
Z R

0

f ðeDÞrðaÞdD� H
Z R

0

gðeDÞlðaÞdDþ V
Z 1

R
gðeDÞrðaÞdD� VR

	
Z 1

R
f ðeDÞlðaÞdD: ð13Þ
After using the signed distance method defined in Definition 4 to defuzzify the fuzzy total cost, we obtain
the following estimated total cost in the fuzzy sense:
E��ðRÞ ¼ dð~EðRÞ; ~0Þ

¼ 1

2

Z 1

0

eEðRÞlðaÞ þ eEðRÞrðaÞh i
da

¼ CðR� IÞ þ 1

2
HR
Z R

0

Z 1

0

½f ðeDÞlðaÞ þ f ðeDÞrðaÞ�dadD
�

�H
Z R

0

Z 1

0

½gðeDÞlðaÞ þ gðeDÞrðaÞ�dadDþ V
Z 1

R

Z 1

0

½gðeDÞlðaÞ þ gðeDÞrðaÞ�dadD

�VR
Z 1

R

Z 1

0

½f ðeDÞlðaÞ þ f ðeDÞrðaÞ�dadD
�
: ð14Þ



Formula 1

(a) By fuzzifying cash demand in (6), the fuzzy total cost is (9).
(b) By (10), fuzzy total cost in (9) can be represented as (11).
(c) Using signed distance method to defuzzify the fuzzy total cost in (11), the estimated total cost in the

fuzzy sense (14) can be obtained.
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3.4. The derivation of main theorems by using exponential distribution as an example of Formula 1

The following is one example of Formula 1. As to the usage of other forms of p.d.f., we can also employ
Formula 1 to obtain similar results. Here, we consider that cash demand during a single business cycle fol-
lows an exponential distribution, i.e. f ðDÞ ¼ 1

h exp � D
h

	 

, 06D, where h is known and 0 < h61. The mean

value of f(D) is
R1
0

Df ðDÞdD ¼ h.

Remark 2. Because h is the statistical estimation of cash demand from each past business cycle, the
measuring unit of cash demand would be consider as $1000, $10,000, $20,000, . . . or $200,000 to enforce the
statistical mean value upon the interval [0, 1]. For example, if the estimations of cash demand from the past
five business cycles are $110,000, $120,000, $160,000, $180,000, and $190,000, then we divide the measuring
unit by $200,000 and therefore the statistical data becomes 11

20 ;
12
20 ;

16
20 ;

18
20 and

19
20, separately, and their mean

value is 1
5 ð1120 þ 12

20 þ 16
20 þ 18

20 þ 19
20Þ ¼ 0:76 2 ½0; 1�. This is regarded as the estimation of h, with measuring unit,

$200,000. Furthermore, by Fig. 1, which is a legend of exponential distribution, if D0 ¼ 2h ln 1
h, then

f(D0) = h.

[Note 2. In this section, the cash demand can be regarded as hybrid data, but h is a fixed value.]

According to Formula 1 and (7), cash demand D is fuzzified as a triangular fuzzy numbereD ¼ ðD� D1;D;Dþ D2Þ, where D1 and D2 can be appropriately determined by the financial manager,
and the membership function of fuzzy cash demand eD is denoted by (8).

Similarly, the a-level set of eD is D(a) = [D1(a),Dr(a)], 06a61, where
DlðaÞ ¼ D� ð1� aÞD1ð> 0Þ and DrðaÞ ¼ Dþ ð1� aÞD2ð> 0Þ: ð15Þ
0

θ
1

a b c dD0

D

θ

Fig. 1. Probability distribution of f(D).
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Remark 3. Formula 1 is the common procedure for finding the estimated total cost in the fuzzy sense
under fuzzy p.d.f. f ðeDÞ. In our cash management problem, on the one hand, cash demand is defined by
varying during [0,1) so that it is relatively difficult and complex to find out the fuzzy p.d.f. of normal
distribution by using Formula 1, and on the other hand, since the exponential distribution shown in Fig. 1
is a concave monotonic decreasing function during [0,1), while normal distribution (N(0,r2)) is a convex
monotonic decreasing function during [0,1), these two distribution functions have analogous shape during
[0,1). Based on this, it is a better measure to use an exponential distribution as an example of p.d.f. such as
in Formula 1 than that of a normal distribution. As regards other forms of p.d.f, we can obtain the
analogous results by using Formula 1 as well.

From Formula 1 and Remark 3, we have the following Theorem 2:

Theorem 2 (Fuzzy case by Formula 1). If the p.d.f. of cash demand D follows an exponential distribution

f ðDÞ ¼ 1
h exp � D

h

	 

; 0 6 D; 0 < h 6 1, and D is fuzzified as a triangular fuzzy number eD (in (7)), then the

following results can be obtained:

(a) The fuzzy total cost is the form in (9) with f ðeDÞ ¼ 1
h exp � 1

h
eD� �

.

(b) The estimate of total cost in the fuzzy sense is E��ðR; hÞ ¼ CðR� IÞ 1
2
HR½F �ð0;R; 1Þ þ F �ð0;R; 2Þ��

1
2
H ½G�ð0;R; 1; 2Þ þ G�ð0;R; 2; 1Þ� þ 1

2
V ½G�ðR;1; 1; 2Þ þ G�ðR;1; 2; 1Þ� � 1

2
VR½F �ðR;1; 1Þ þ F �ðR;1; 2Þ�

(in (A.14)), where F*(0,R; j), F*(R,1; j); j = 1,2,G* (0,R;1,2), G*(0,R;2,1), G*(R,1; 1,2) and

G*(R,1; 2,1) are defined by (A.10)–(A.13) in the appendix.

(c) The optimal solution in the fuzzy sense is: if B(h,D1,D2) > 0, A(h,D1,D2) > 0, and B(h,D1,D2) > h
A(h,D1,D2), then the optimal cash-raising amount R�

2ðh;D1;D2Þ ¼ h ln Bðh;D1;D2Þ
hAðh;D1;D2Þ

, where A(h,D1,D2) and

B(h,D1,D2) are defined by (A.18) in the appendix, and the minimum total cost E��ðR�
2ðh;D1;D2Þ; hÞ is

the result of substituting R�
2ðhÞ into R of E**(R;h) shown in (b).

Proof. See Appendix. h

This means that when the p.d.f. of cash demand is known and the variations of cash demand have been
appropriately determined by the financial manager, the optimal cash-raising amount and the minimum to-
tal cost formulated under the fuzzy integral method can be found out by Theorem 2.

Theorem 3 (Crisp case). If the p.d.f. of cash demand D follows an exponential distribution

f ðDÞ ¼ 1
h exp � D

h

	 

, 06D, 0 < h61, and total cost is E(R) (in (6)), then the following results can be obtained:

(a) The optimal cash-raising amount is R�
1ðhÞ ¼ h ln HþV

HþC, where 0 < h61 and V > C.

(b) The minimum total cost is EðR�
1ðhÞÞ ¼ ðH þ CÞR�

1ðhÞ þ Cðh� IÞ.

Proof. See Appendix. h
f �ðDÞ 
 dðf ðeDÞ; ~0Þ ¼ 1

2

Z 1

0

exp �Dþ h ln hþ ð1� aÞD2

h

� �
þ exp �Dþ h ln h� ð1� aÞD1

h

� �� �
da

¼ h
2D2

exp �Dþ h ln h
h

� �
� exp �Dþ h ln hþ D2

h

� �� �
� h
2D1

exp �Dþ h ln h
h

� �
� exp �Dþ h ln h� D1

h

� �� �
;
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Remark 4. From (A.2) and (A.3) and Definition 4, we have
and
Table
Crisp

h

R�
1ðhÞ

EðR�
1ðh
Z 1

0

f �ðDÞdD ¼ h
2D2

1� exp �D2

h

� �� �
� h
2D1

1� exp �D1

h

� �� �
:

The financial manager can appropriately determine D1 and D2 to satisfy the following conditions:
D > D1 > 0, D2 > 0, and h

2D2
½1� exp � D2

h

	 

� � h

2D1
½1� exp � D1

h

	 

� ¼ 1. Obviously, f*(D) > 0 for all D > 0

and
R1
0 f �ðDÞdD ¼ 1, then f*(D) is called the p.d.f. of Dran in the fuzzy sense.
4. Numerical example

The methodology of fuzzification that we have proposed in the preceding sections would be helpful for
financial managers to improve their cash-raising decisions and achieve the optimal cash-raising policy for
the minimum total cost. In order to specifically illustrate the above procedures, let us consider a hypothet-
ical cash-raising system with the following example.

Example. We illustrate the example by assuming the p.d.f. of cash demand to be f ðDÞ ¼ 1
h exp ð� D

hÞ, 06D,
0 < h61. Afterwards, we consider a cash-raising system with the following data: C = $0.1, I = $0,
H = $0.02, V = $0.2, and $D1, $D2 can be determined by the financial manager, then we employ Theorems 2
and 3 to compute the scenarios of h = 1, 0.8, 0.6, 0.4, respectively.

Furthermore, in order to find the relative errors in cash-raising amount and total cost between the fuzzy
case and crisp case, we let
r21ðhÞ ¼
R�
2ðh;D1;D2Þ � R�

1ðhÞ
R�
1ðhÞ

	 100ð%Þ;

F 21ðhÞ ¼
E��ðR�

2ðh;D1;D2Þ; hÞ � EðR�
1ðhÞÞ

EðR�
1ðhÞÞ

	 100ð%Þ;
these numerical results are presented in Tables 1–4, and furthermore the implications will be separately dis-
cussed in the next section.

For simplicity, we use the notation R�
2ðhÞ and E��ðR�

2ðhÞ; hÞ to respectively replace R�
2ðh;D1;D2Þ and

E��ðR�
2ðh;D1;D2Þ; hÞ hereafter.

In the illustrated example, all of the parameters such as C, I, H, V, D1 and D2 are measured by millions.
The additional explanations for Tables 1–4 are enumerated as follows.

(1) In Table 2, if D1 = D2 = 0.00001, then the optimal cash-raising amounts and the minimum total costs
are almost indifferent between the fuzzy case and the crisp case, (see Section 5.1).

(2) In Tables 2 and 3, for each given D2 � D1(P0), when h increases within interval (0,1], the optimal
cash-raising amount, R�

2ðh;D1;D2Þ, and the minimum total cost, E��ðR�
2ðh;D1;D2Þ; hÞ, are decreased.
1
optimal solutions

1 0.8 0.6 0.4

0.606136 0.484909 0.363681 0.242454
ÞÞ 0.172736 0.138189 0.103642 0.069095



Table 2
Optimal solutions for fuzzy case (D1 < D2 and D1, D2 in millions)

h D1 0.00001 0.00001 0.0002 0.003 0.005
D2 0.00001 0.000012 0.0003 0.004 0.007
D2 � D1 0 0.000002 0.0001 0.001 0.002

1 R�
2ð1Þ 0.606136 0.606136 0.60614 0.606183 0.606236

E��ðR�
2ð1Þ; 1Þ 0.172736 0.172736 0.172736 0.172734 0.172732

r21(1) % 0 0.00001 0.0007 0.0078 0.0165
F21(1) % 0 0 �0.0002 �0.0014 �0.0024

0.8 R�
2ð0:8Þ 0.484909 0.484909 0.484913 0.484957 0.485013

E��ðR�
2ð0:8Þ; ð0:8Þ 0.138189 0.138189 0.138189 0.138187 0.138185

r21(0.8) % 0 0.00002 0.00087 0.0101 0.0215
F21(0.8) % 0 0 �0.00022 �0.0016 �0.0027

0.6 R�
2ð0:6Þ 0.363681 0.363682 0.363686 0.363733 0.363793

E��ðR�ð0:6Þ; 0:6Þ 0.103642 0.103642 0.103641 0.10364 0.103639
r21(0.6) % 0 0.00002 0.0012 0.0141 0.0306
F21(0.6) % 0 0 �0.00029 �0.0019 �0.0029

0.4 R�
2ð0:4Þ 0.242454 0.242454 0.242459 0.24251 0.24258

E��ðR�
2ð0:4Þ; 0:4Þ 0.069095 0.069095 0.0690-94 0.069093 0.069093

r21(0.4) % 0 0.00003 0.00175 0.0231 0.0517
F21(0.4) % 0 0 �0.00043 �0.0021 �0.0021

Table 3
Optimal solutions for fuzzy case (D1 < D2 and D1, D2 in millions)

h D1 0.01 0.015 0.02 0.1 0.1
D2 0.015 0.024 0.03 0.15 0.2
D2 � D1 0.005 0.009 0.01 0.05 0.1

1 R�
2ð1Þ 0.606417 0.606686 0.606947 0.61537 0.620167

E��ðR�
2ð1Þ; 1Þ 0.172729 0.172728 0.172738 0.173374 0.173529

r21(1) % 0.0463 0.0908 0.1165 1.5235 2.3149
F21(1) % �0.0041 �0.0045 �0. 001 0.3693 0.4588

0.8 R�
2ð0:8Þ 0.485208 0.485503 0.485687 0.495891 0.501306

E��ðR�
2ð0:8Þ; 0:8Þ 0.138184 0.138186 0.138199 0.139019 0.139243

r21(0.8) % 0.0616 0.1225 0.1605 2.2647 3.3816
F21(0.8) % �0.0037 �0.0022 0.007 0.6007 0.7624

0.6 R�
2ð0:6Þ 0.364011 0.364348 0.36458 0.377532 0.383921

E��ðR�
2ð0:6Þ; 0:6Þ 0.10364 0.103647 0.103665 0.104787 0.105118

r21(0.6) % 0.0905 0.1833 0.2471 3.8083 5.5653
F21(0.6) % �0.0017 0.00486 0.0222 1.1049 1.4243

0.4 R�
2ð0:4Þ 0.242844 0.243266 0.243592 0.261855 0.269971

E��ðR�
2ð0:4Þ; 0:4Þ 0.069099 0.069116 0.069144 0.070874 0.071366

r21(0.4) % 0.1605 0.3348 0.4692 8.0018 11.349
F21(0.4) % 0.0070 0.0305 0.0715 2.537 3.2877
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(3) In Table 3, if D1 = 0.1, D2 = 0.2, h = 0.4, then r21(0.4) = 11.349(%) and F21(0.4) = 3.2877(%). Note
that the unit of measurement is millions, so there are significant differences between the fuzzy case and
the crisp case.

(4) In Table 4, we may also find the similar features.
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Fig. 2. Graph of R�
2ðh;D;DÞ (scenario: h = 1, p1 = 0.0001, p2 = 0.001, p3 = 0.003, p4 = 0.005, p5 = 0.007, p6 = 0.009, p7 = 0.01,

p8 = 0.03, p9 = 0.05, p10 = 0.07, p11 = 0.09, p12 = 0.1, by Table 1, R�
1ð1Þ ¼ 0:606136).

Table 4
Optimal solutions for fuzzy case (D2 < D1, and D1, D2 in millions)

h D1 0.000012 0.0003 0.004 0.015 0.15 0.2

D2 0.00001 0.0002 0.003 0.01 0.1 0.1
D1 � D2 0.00001 0.0001 0.001 0.005 0.05 0.1

1 R�
2ð1Þ 0.606136 0.606132 0.6061 0.606 0.611381 0.612328

E��ðR�
2ð1Þ; 1Þ 0.172738 0.172744 0.172759 0.172767 0.173701 0.174202

r21(1) % �0.00001 �0.00068 �0.0059 �0.022 0.8653 1.0216
F21(1) % 0 0.000177 0.00212 0.0134 0.5586 0.8487

0.8 R�
2ð0:8Þ 0.484909 0.484905 0.484874 0.484791 0.491999 0.493741

E��ðR�
2ð0:8Þ; 0:8Þ 0.138189 0.138189 0.138193 0.138214 0.13936 0.139954

r21(0.8)% �0.00002 �0.00085 �0.0071 �0.024 1.4623 1.8215
F21(0.8) % 0 0.00022 0.00277 0.0182 0.0847 1.2769

0.6 R�
2ð0:6Þ 0.363681 0.363677 0.363649 0.363594 0.373851 0.37694

E��ðR�
2ð0:6Þ; 0:6Þ 0.103642 0.103642 0.103646 0.10367 0.105156 0.105909

r21(0.6) % �0.000023 �0.0011 �0.0088 �0.024 2.7963 3.6455
F21(0.6) % 0 0.0003 0.00394 0.0276 1.461 2.1874

0.4 R�
2ð0:4Þ 0.242454 0.24245 0.242427 0.242428 0.258758 0.264588

E��ðR�
2ð0:4Þ; 0:4Þ 0.069095 0.069095 0.069099 0.06913 0.071296 0.072378

r21(0.4) % �0.00003 �0.0017 �0.011 �0.011 6.7244 9.1288
F21(0.4) % 0 0.00045 0.00668 0.0511 3.1866 4.7523
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In addition, when D 
 D1 = D2, by rearranging (A.18), we have Aðh;D;DÞ ¼ C þ hH exp D
hð Þ�exp �D

hð Þð Þ
2D and

Bðh;D;DÞ ¼ h
2
ðH þ V Þðexp D

h

	 

þ exp � D

h

	 

Þ, then Theorem 2(c) becomes R�

2ðh;D1;D2Þ ¼ h ln Bðh;D;DÞ
hAðh;D;DÞ, where

0 < h61, and furthermore E��ðR�
2ðh;D1;D2Þ; hÞ (in Theorem 2(c)) can be obtained as well. For h = 1, 0.6,

the varied trends with respect to variation D;R�
2ðh;D1;D2Þ and E��ðR�

2ðh;D1;D2Þ; hÞ are shown in Figs. 2–
5, respectively.

In Fig. 2, when h = 1 and the variation D from p1 = 0.0001 to p7 = 0.01, the values of R�
2ð1;D;DÞ are

very close to that of the crisp case (R�
1ð1Þ ¼ 0:606136); and in Fig. 3, there are the same results when

h = 0.6 (see Section 5.1).
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Fig. 3. Graph of R�
2ðh;D;DÞ (scenario: h = 0.6, p1 = 0.0001, p2 = 0.001, p3 = 0.003, p4 = 0.005, p5 = 0.007, p6 = 0.009, p7 = 0.01,

p8 = 0.03, p9 = 0.05, p10 = 0.07, p11 = 0.09, p12 = 0.1, by Table 1, R�
1ð0:6Þ ¼ 0:363681).
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Fig. 4. Graph of E��ðR�
2ðh;D;DÞ; hÞ (scenario: h = 1, p1 = 0.0001, p2 = 0.001, p3 = 0.003, p4 = 0.005, p5 = 0.007, p6 = 0.009,

p7 = 0.01, p8 = 0.03, p9 = 0.05, p10 = 0.07, p11 = 0.09, p12 = 0.1, by Table 1, EðR�
1ð1ÞÞ ¼ 0:172736).
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Fig. 5. Graph of E��ðR�
2ðh;D;DÞ; hÞ (scenario: h = 0.6, p1 = 0.001, p2 = 0.0001, p3 = 0.003, p4 = 0.005, p5 = 0.007, p6 = 0.009,

p7 = 0.01, p8 = 0.03, p9 = 0.05, p10 = 0.07, p11 = 0.09, p12 = 0.1, by Table 1, EðR�
1ð0:6ÞÞ ¼ 0:103642).
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Similarly, in Fig. 4, when h = 1 and the variation D from p1 = 0.0001 to p7 = 0.01, the values of
E��ðR�

2ð1;D;DÞ; hÞ are very close to that of the crisp case (EðR�
1ð1ÞÞ ¼ 0:172736); and in Fig. 5, there are

the same results when h = 0.6 (see Section 5.1).
Our Theorems 2 and 3 constitute the foundations of the fuzzy cash management model we are propos-

ing. The additional discussions are summarized in the next section.
5. Discussions

Let us discuss the features derived from our fuzzy model as below.
5.1. Using triangular fuzzy number eD ¼ ðD� D1;D;Dþ D2Þ to fuzzify p.d.f. as f ðeDÞ in Section 3.4

When the p.d.f. of the random cash demand Dran is f ðDÞ ¼ 1
h exp � D

h

	 

, the fuzzy case of Theorem 2

can be obtained. From Figs. 2–5, if D1 = D2 = D ! 0, then the fuzzy case is close to the crisp case of The-
orem 3.

5.2. The reason for the application of metric q in Definition 6

In Theorem 1 of Section 2 provided by Goetschel and Voxman (1986), two r-level sets
([a(r,x),b(r,x)], [p(r,x),q(r,x)]) of intervals are regarded as a point in two-dimensional vector space. That
is to apply the operations (+, �, ·) of vectors and to use the metric D1 in two-dimensional vector space
to demonstrate Theorem 1. But in this paper, the operations (+, �, ·) of crisp intervals shown in (10) in
Section 3.3 are not the vectors operations. The operations ((+), (�), (·)) of fuzzy sets are to apply the oper-
ations (+, �, ·) of crisp intervals and decomposition theorem to find the operational results of fuzzy sets,
and then the fuzzy integral in Property 4 will be derived from using the operations ((+), (�), (·)) of fuzzy
sets to deal with metric q. Thus it can be seen that Theorem 1 provided by Goetschel and Voxman (1986) is
due to using the operations of vectors but not the fuzzy intervals derived from using fuzzy operations and
metric D1. Namely, Theorem 1 does not satisfy the fuzzy principle. However, Property 4 is analogous with
Theorem 1.

Furthermore, general metrics in two-dimensional vector space usually use the vectors� operations
(+, �, ·). It is not suitable to employ such metrics to find the fuzzy integral. The derivation of metric q used
in our paper is to apply Definition 6 and the linear order d (see Properties 1 and 2) defined on Fs (i.e., the
family of fuzzy sets on R defined in Section 2) to operate our model and such metric q satisfies three metric
axioms (e.g., see Property 3).
6. Concluding remarks

In practice, since most single-period cash management problems have no historical data to determine the
cash demand and formulate its probability distribution function for computing the optimal cash-raising
amount, the fuzzy model developed in this study should be more suitable to solve the real world cash man-
agement problems than non-fuzzy models. In this paper, we have focused on applying the fuzzy stochastic
single-period model based on fuzzy integral method to solve the problem of cash management, where de-
mand is regarded as hybrid data. In conclusion, we have explained why past data cannot sufficiently predict
real cash demand that may depend on unexpected events. Our main contribution is to provide the analytical
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development of a theoretical model, so as to reveal the practicability of applying single-period inventory
theory in the issue of cash management with the fuzzy sense.
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Appendix A. Proofs of Theorems

Proof of Theorem 2

(a) By Formula 1(a).
(b) To fuzzify the cash demand D of p.d.f. f(D), we obtain a fuzzy set f ðeDÞ, and then utilize extension

principle to find its membership function l
f ðeDÞðzÞ as follows:

Let z = f(x), i.e., x = �h ln hz, by (8), we have
l
f ðeDÞðzÞ ¼ sup

x¼�h ln hz
leDðxÞ ¼

DþD2þh ln hþh ln z
D2

; 1
h exp � DþD2

h

	 

6 z 6 1

h exp � D
h

	 

;

�h ln h�DþD1�h ln z
D1

; 1
h exp � D

h

	 

6 z 6 1

h exp � D�D1

h

	 

;

0; otherwise:

8>><>>: ðA:1Þ
Thus, the left and right end points of the a-level f ðeDÞðaÞ of f ðeDÞ are
f ðeDÞlðaÞ ¼ exp �Dþ h ln hþ ð1� aÞD2

h

� �
; ðA:2Þ

f ðeDÞrðaÞ ¼ exp �Dþ h ln h� ð1� aÞD1

h

� �
: ðA:3Þ
We also fuzzify g(D) as gðeDÞ ¼ eDð�Þf ðeDÞ, then from (8), 06Dl(a) < Dr(a) and 0 6 f ðeDÞlðaÞ < f ðeDÞrðaÞ,
"a 2 [0, 1]. By (10), the a-level set of gðeDÞ can be rewritten as
gðeDÞðaÞ ¼ ½gðeDÞlðaÞ; gðeDÞrðaÞ� ¼ ½DlðaÞf ðeDÞlðaÞ;DrðaÞf ðeDÞrðaÞ�: ðA:4Þ

From Property 4 and (12), (13), we can obtain the fuzzy total cost eEðRÞ in (11). Using signed distance meth-
od in Definition 4 to defuzzify (11), we have
E��ðR; hÞ 
 dðeEðRÞ; e0Þ ¼ 1

2

Z 1

0

½eEðRÞlðaÞ þ eEðRÞrðaÞ�da ¼ 1

2
½E��ðRÞl þ E��ðRÞr�; ðA:5Þ
where eEðRÞlðaÞ and eEðRÞrðaÞ are in (12) and (13) respectively,
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E��ðRÞl ¼
Z 1

0

eEðRÞlðaÞda
¼ CðR� IÞ þ HR

Z R

0

Z 1

0

f ðeDÞlðaÞdadD� H
Z R

0

Z 1

0

gðeDÞrðaÞdadD

þ V
Z 1

R

Z 1

0

gðeDÞlðaÞdadD� VR
Z 1

R

Z 1

0

f ðeDÞrðaÞdadD; ðA:6Þ

E��ðRÞr ¼
Z 1

0

eEðRÞrðaÞda
¼ CðR� IÞ þ HR

Z R

0

Z 1

0

f ðeDÞrðaÞdadD� H
Z R

0

Z 1

0

gðeDÞlðaÞdadD

þ V
Z 1

R

Z 1

0

gðeDÞrðaÞdadD� VR
Z 1

R

Z 1

0

f ðeDÞlðaÞdadD: ðA:7Þ
The integrals
R 1

0
f ðeDÞlðaÞda,

R 1

0
f ðeDÞrðaÞda,

R 1

0
gðeDÞlðaÞda, and

R 1

0
gðeDÞrðaÞda must be calculated before-

hand in order to solve (14) (or (A.6) and (A.7)). From (A.2)–(A.4), we have the following:

for j ¼ 1; 2;

LðD; jÞ 

Z 1

0

exp �Dþ h ln hþ ð�1Þjð1� aÞDj

h

� �
da

¼ h

ð�1Þjþ1Dj

Z ðDþh ln hÞ
h

ðDþh ln hÞþð�1ÞjDj
h

expð�zÞdz

¼ h

ð�1Þjþ1Dj

exp
ð�1Þjþ1Dj

h

 !
� 1

" #
exp �Dþ h ln h

h

� �
:

ðA:8Þ
Afterwards, we use the formula,
R b
a zðexpð�zÞÞdz ¼

R b
a zdð� expð�zÞÞ ¼ ½�zðexpð�zÞÞ�jba þ

R b
a expð�zÞdz, in

the following operation: For i, j = 1, 2 and i5 j,
KðD; i; jÞ 

Z 1

0

½Dþ ð�1Þið1� aÞDi� exp �Dþ h ln hþ ð�1Þjð1� aÞDj

h

� �
da

¼ � h

D2
j

Z ðDþh ln hÞ
h

ðDþh ln hþð�1ÞjDjÞ
h

½ð�1ÞiDihzþ ð�1ÞjDjD� ð�1ÞiDiðDþ h ln hÞ� expð�zÞdz

¼ Dih
Dj

exp �Dþ h ln hþ ð�1ÞjDj

h

� �

þ ð�1Þiþ1Dih
2

D2
j

þ ð�1Þjþ1h
Dj

D

" #
ð�1Þjþ1Dj

h
LðD; jÞ: ðA:9Þ
Continuously, let Z jþ1 jþ1
 !" # � �� �
F �ð0;R; jÞ 

R

0

LðD; jÞdD ¼ ð�1Þ h
Dj

exp
ð�1Þ Dj

h
� 1 1� exp �Rþ h ln h

h
; ðA:10Þ

F �ðR;1; jÞ 

Z 1

R
LðD; jÞdD ¼ ð�1Þjþ1h2

Dj
exp

ð�1Þjþ1Dj

h

 !
� 1

" #
exp �Rþ h ln h

h

� �
; ðA:11Þ
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G�ð0;R; i; jÞ 

Z 1

R
KðD; i; jÞdD

¼ Dih
2

Dj
1� exp �R

h

� �� �
exp � h ln hþ ð�1ÞjDj

h

� �
� Dih

Dj
F �ð0;R; jÞ

þ ð�1Þjþ1h2

Dj
exp

ð�1Þjþ1Dj

h

 !
� 1

" #
1� ðRþ hÞ exp �Rþ h ln h

h

� �� �
; ðA:12Þ

G�ðR; h; i; jÞ 

Z 1

R
KðD; i; jÞdD

¼ Dih
2

Dj
exp �Rþ h ln hþ ð�1ÞjDj

h

� �
� Dih

Dj
F �ðR;1; jÞ

þ ð�1Þjþ1h2

Dj
exp

ð�1Þjþ1Dj

h

 !
� 1

" #
ðRþ hÞ exp �Rþ h ln h

h

� �� �
: ðA:13Þ
Hence, from (A.5)–(A.9), we have
E��ðR; hÞ ¼ CðR� IÞ þ 1

2
HR
Z R

0

ðLðD; 1Þ þ LðD; 2ÞÞdD

� 1

2
H
Z R

0

ðKðD; 1; 2Þ þ KðD; 2; 1Þ
� �

dD

þ 1

2
V þ

Z 1

R
ðKðD; 1; 2Þ þ KðD; 2; 1Þ

� �
dD� 1

2
VR
Z 1

R
ðLðD; 1Þ þ LðD; 2ÞdD: ðA:14Þ
In addition, from (A.10)–(A.14), the estimate of total cost in the fuzzy sense can be expressed as
E��ðR; hÞ ¼ CðR� IÞ þ 1

2
HR½F �ð0;R; 1Þ þ F �ð0;R; 2Þ� �

1

2
H G�ð0;R; 1; 2Þ þ ðG�ð0;R; 2; 1Þ½ �

þ 1

2
V þ ½G�ðR;1; 1; 2Þ þ G�ðR;1; 2; 1Þ� � 1

2
VR½F �ðR;1; 1Þ þ F �ðR;1; 2Þ�: ðA:15Þ
To find the optimal solution, we take the first-order differential of E**(R;h) (in (A.14)) with respect to R,
yields Z
d

dR
E��ðR; hÞ ¼ C þ 1

2
H

R

0

ðLðD; 1Þ þ LðD; 2ÞÞdDþ 1

2
HR½LðR; 1Þ þ LðR; 2Þ�

� 1

2
H ½KðR; 1; 2Þ þ KðR; 2:1Þ� � 1

2
V ½KðR; 1; 2Þ þ KðR; 2; 1Þ�

� 1

2
V
Z 1

R
ðLðD; 1Þ þ LðD; 2ÞÞ þ 1

2
VR½LðR; 1Þ þ LðR; 2Þ�

¼ C þ 1

2
H ½F �ð0;R; 1Þ þ F �ð0;R; 2Þ� �

1

2
V ½F �ðR;1; 1Þ þ F �ðR;1; 2Þ�

þ 1

2
ðH þ V Þ½ðRLðR; 1Þ � KðR; 2; 1ÞÞ þ ðRLðR; 2Þ � KðR; 1; 2ÞÞ�: ðA:16Þ
Using (A.8) and (A.9) to compute the last term on the right-hand side of (A.16), yields
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RLðR; jÞ � KðR; i; jÞ ¼ �
"
Dih
Dj

: exp
ð�1Þjþ1Dj

h

 !
þð�1Þiþ1Dih

2

D2
j

exp
ð�1Þjþ1Dj

h

 !
� 1

 !#

	 exp �Rþ h ln h
h

� �
: ðA:17Þ
Then, let
Aðh;D1;D2Þ ¼ C þ h
2
H

1

D1

exp
D1

h

� �
� 1

� �
� 1

D2

exp �D2

h

� �
� 1

� �� �
;

Bðh;D1;D2Þ ¼
1

2
ðH þ V Þ

"
h2

D1

exp
D1

h

� �
� 1

� �
� h2

D2

exp �D2

h

� �
� 1

� �

þ D1h
D2

exp �D2

h

� �
þ D1h

2

D2
2

exp �D2

h

� �
� 1

� �
þ D2h

D1

exp �D1

h

� �

�D2h
2

D2
1

exp þD1

h

� �
� 1

� �#
:

ðA:18Þ
Substituting (A.17) and (A.18) into (A.16) and taking the second derivative of E**(R;h) with respect to R

yields � �

d

dR
E��ðR; hÞ ¼ Aðh;D2;D2Þ � Bðh;D1;D2Þ exp �Rþ h ln h

h
;

and
d2

dR2
E��ðR; hÞ ¼ Bðh;D1;D2Þ

h
exp �Rþ h ln h

h

� �
> 0; if Bðh;D1;D2Þ > 0:
Hence, taking d
dR E

��ðR; hÞ ¼ 0 and if B(h,D1,D2) > 0, A(h,D1,D2) > 0, B(h,D1,D2) > hA(h,D1,D2), then we
have the following optimal cash-raising amount in the fuzzy sense given by
R ¼ h ln
Bðh;D1;D2Þ
hAðh;D1;D2Þ


 R�
2ðh;D1;D2Þ; where 0 < h 6 1:
Also, the minimum total cost E��ðR�
2ðh;D1;D2Þ; hÞ can be obtained by substituting R�

2ðhÞ into R of E**(R;h),
which is shown in (A.15). h

Proof of Theorem 3.

By
R R�

1ðhÞ
0

1
h exp � D

h

	 

dD ¼ V�C

HþV , if V > C, have (a). Substituting the result of (a), exp � R�
1ðhÞ
h

� �
¼ HþC

HþV , into

(6), Theorem 3 holds. h
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