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Abstract

The objective of this paper is to extend the classical discounted cash flow (DCF) model by developing a fuzzy logic system that takes

vague cash flow and imprecise discount rate into account. In order to explicitly discuss a more appropriate valuation model, uncertain

information will be fuzzified as triangular fuzzy numbers to quantify and evaluate the intrinsic value of a company’s financial asset under the

framework of DCF approach. We will find that the fuzzy discounted cash flow (FDCF) model proposed in this paper is one extension of

classical (crisp) model and should be more suitable to capture the elements of valuation than non-fuzzy models.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A clear thinking about valuation and skill in using a right

valuation method to guide business decisions are prerequi-

sites for success in current competitive environment.

Generally speaking, all management decisions are based

on some valuation model. It is therefore to the managers’

advantage to base their decisions on the model that most

accurately reflects company value. The discounted cash

flow (DCF) model, an economic model, studied by the

classical mathematics of finance describes some very

general ways to characterize the expression of its present

value (see, e.g. Brigham, 1992; Sharpe, Alexander, &

Bailey, 1999). In practice, the DCF model has become very

popular in valuation because it is most consistent with the

goal of long-term value creation, and it may capture all the

elements that affect the value of the company in a

comprehensive yet straightforward manner. It is also widely

applied in many fields such as project management,

insurance, and financial management. Some proponents of

the DCF approach have even suggested that the DCF model
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can provide a more sophisticated and reliable picture of a

company’s value than the accounting approach (Copeland,

Koller, & Murrin, 1994). Furthermore, the DCF approach is

strongly supported by research into how the stock markets

actually value companies since the stock is one of the

financial assets that take the dividend paying to be the

primary source of cash flow. In this way, if a investor is able

to accurately estimate the future cash-flow stream of a

financial asset and to match up an appropriate discount rate,

then they would easily compute the fair asset’s value, so as

to take an action (to sell or continuing to hold the asset).

However, such a classical DCF model does not

incorporate the uncertainties, which may be inherent in

the parameters used in it. Because various types of

uncertainties and imprecision such as discount rate and

future cash flows are inherent in the financial environments,

the uncertain parameters are usually regarded as a constant

or treated as a random variable that may be estimated by

past statistical data. In realistic situations, unfortunately,

such the estimation is often biased. For example, Shiller

(1981) applied DCF model to derive the upper and lower

bounds of fluctuation of stock prices, but the empirical

results showed that the real stock prices obviously went

beyond the scope. In addition, although some existing

literature has incorporated uncertainty into the related

fields of investment decision based on intuitive methods
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or a probabilistic approach (see, e.g. Brigham, 1992; Hurley

& Johnson, 1994; Liang & Song, 1994), and the uncertain

information is therefore estimated by using educated

guesses or other statistical techniques, there are the

disadvantages of depending too much on the intuition of

the decision maker and requiring the fulfillment of some

assumptions about probabilistic distributions.

Recently, some developments in fuzzy-financial math-

ematics have been applied to the valuation issues. Buckley

(1987) studied the fuzzy extension of the mathematics of

finance to concentrate on the compound interest law. Then,

Li Calzi (1990) investigated a possible general setting by

considering both compact fuzzy intervals and invertible

fuzzy intervals for the fuzzy mathematics of finance. Kuchta

(2000) also generalized fuzzy equivalents for methods of

evaluating investment projects. Furthermore, to observe the

investors’ behavior in the financial market with a compli-

cated and uncertain environment, investors are always

trying to rely on some ways to accurately predict the prices

of a specific financial asset, but often have less than

successful results. For this reason, several researchers

endeavored to propose a series of excellent studies based

on fuzzy techniques in order to valuate the stock market and

further to predict stock prices accurately. For example,

Dourra and Siy (2002) applied fuzzy information technol-

ogies to investments through technical analysis, and used

them to examine various companies to achieve a substantial

investment return. Kuo, Chen, and Hwang (2001) used

genetic algorithm based on fuzzy neural networks to

measure quantitative and qualitative effects on the stock

market. Wang (2002) proposed a fuzzy grey prediction

system to analyze stock data and to predict stock prices, and

then he employed fuzzy rough set system to predict the

stronger rules of stock price, achieving a higher degree of

accuracy (see, e.g. Wang, 2003). Nevertheless, the models

employed in their studies are much complicated and the

ordinary investors’ concerns still exist.

In view of the above, indeed, there is an opportunity to

improve the classical DCF model by using the advances in

mathematics and sciences of fuzzy set theory. Namely,

fuzzy reasoning is very effective in such environments.

Therefore, the purpose of this paper is to extend a classical

(crisp) DCF model that can be fed with a fuzzy system,

hoping to make it more applicable in practice. We start to

describe the DCF model in its classical form. Further, all

uncertain parameters will be given a fuzzified form in the

paper.

The rest of this paper is organized as follows. Section 2

states the preliminaries where we define the l-signed

distance method which is similar to Yao and Wu (2000),

and then employ it to formulate the fuzzy discount cash flow

(FDCF) model. The crisp DCF model will be surveyed in

Section 3 first. Then in Section 4, triangular fuzzy numbers

and their operations will be performed and discussed with

regard to the fuzzy valuation model. In Section 5, the results

derived from the fuzzy case in Section 4 will be compared to
that of crisp case with numerical operations, and then the

implications of the FDCF model are discussed in Section 6.

Finally, we give the conclusion remarks in Section 7.
2. Preliminaries

Before presenting the FDCF model based on the l-signed

distance method, the following definitions are provided in

advance with some relevant operations (see, e.g. Kaufmann

& Gupta, 1991).

Definition 2.1. A fuzzy set [a,b;a], a!b defined on

<Z ðKN;NÞ, which has the following membership func-

tion, is called a level a fuzzy interval.

m½a;b;a�ðxÞ Z
a; a%x%b;

0; otherwise:

(

Definition 2.2. By Pu and Liu (1980), fuzzy point ~a is a

fuzzy set defined on < with the following membership

function:

m ~aðxÞ Z
1; x Z a;

0; xsa:

(

Definition 2.3. The triangular fuzzy number ~B is defined on

< with a membership function as follows, and denoted by
~BZ ða; b; cÞ, where a!b!c.

m ~BðxÞ Z

x Ka

b Ka
; a%x%b;

c Kx

c Kb
; b%x%c;

0; otherwise:

8>><
>>:

Let Fs be the family of fuzzy sets defined on <, for each
~D2Fs, the a-cut of ~D is denoted by DðaÞZ fxjm ~DðxÞRagZ
½ ~DLðaÞ; ~DUðaÞ� (0%a%1), and both ~DLð0Þ and ~DUð0Þ are

finite values. For each a2[0,1], the real numbers ~DLðaÞ,
~DUðaÞ separately represent the left and right end points of

D(a) and satisfy the conditions that both of ~DLðaÞ, ~DUðaÞ

exist in a2[0,1] and are continuous over [0,1].

Let ~D2Fs, by decomposition theory, we have

~D Z g
0%a%1

aIDðaÞ;

where ID(a) is the characteristic function of D(a). By

Definition 2.1, if x2D(a), then aIDðaÞðxÞZaZ
m½DLðaÞ;DUðaÞ;a�ðxÞ, and if x;D(a), then aIDðaÞðxÞZ0Z
m½DLðaÞ;DUðaÞ;a�ðxÞ, therefore, we have

~D Z g
0%a%1

aIDðaÞ Z g
0%a%1

½ ~DLðaÞ; ~DUðaÞ;a�: (2.1)

Introducing the concept of Yao and Wu (2000), we

consider the signed distance and ranking on Fs and provide

Definitions 2.4–2.6 as follows:

For each l2(0,1), the l-signed distance of closed

interval ½ ~DLðaÞ; ~DUðaÞ� from origin 0 can be defined by



Fig. 1. a-cut ½ ~DLðaÞ; ~DU ðaÞ� and point l ~DLðaÞC ð1KlÞ ~DUðaÞ in ½ ~DLðaÞ; ~DU ðaÞ�.

J.-S. Yao et al. / Expert Systems with Applications 28 (2005) 209–222 211
d0ð½ ~DLðaÞ; ~DUðaÞ�; 0; lÞZl ~DLðaÞC ð1KlÞ ~DUðaÞ, where

l ~DLðaÞC ð1KlÞ ~DUðaÞ is a inner point in ½ ~DLðaÞ; ~DUðaÞ�.

(See Fig. 1.)

Since for each a2[0,1], ½ ~DLðaÞ; ~DUðaÞ�4 ½ ~DLðaÞ;
~DUðaÞ;a� and 04 ~0 are one-to-one mapping, the l-signed

distance of ½ ~DLðaÞ; ~DUðaÞ;a� from ~0 can be defined

by dð½ ~DLðaÞ; ~DUðaÞ;a�; ~0; lÞZd0ð½ ~DLðaÞ; ~DUðaÞ�; 0; lÞZ
l ~DLðaÞC ð1KlÞ ~DUðaÞ.

For each ~D2Fs (0%a%1), ~DLðaÞ, ~DUðaÞ is a function

of a and continuous over [0,1], so the integral mean value of

the l-signed distance isð1

0
dð½ ~DLðaÞ ~DUðaÞ;a�; ~0; lÞda

Z

ð1

0
ðl ~DLðaÞC ð1 KlÞ ~DUðaÞÞda: (2.2)

According to (2.1) and (2.2), we have the Definition 2.4

as follows.

Definition 2.4. (a) For each ~D2Fs and each l2(0,1), the

l-signed distance from ~D to ~0 is defined by

dð ~D; ~0; lÞ Z

ð1

0
½l ~DLðaÞC ð1 KlÞ ~DUðaÞ�da:

(b) When ~DZ ða; a; aÞZ ~a is a fuzzy point at a and for all

a2[0,1], ~DLðaÞZ ~DUðaÞZa, then dð ~a; ~0; lÞZa for all

l2(0,1).

Next, the arithmetic operations of level a fuzzy intervals

a2[0,1] are shown below:

½ ~ALðaÞ; ~AUðaÞ;a�ðCÞ½ ~BLðaÞ; ~BUðaÞ;a�

Z ½ ~ALðaÞC ~BLðaÞ; ~AUðaÞC ~BUðaÞ;a�: (2.3)
When 0% ~ALðaÞ! ~AUðaÞ and 0% ~BLðaÞ! ~BUðaÞ, we

have

½ ~ALðaÞ; ~AUðaÞ;a�ð!Þ½ ~BLðaÞ; ~BUðaÞ;a�

Z ½ ~ALðaÞ ~BLðaÞ; ~AUðaÞ ~BUðaÞ;a�: (2.4)

Similarly, when 0% ~ALðaÞ! ~AUðaÞ and 0! ~BLðaÞ!
~BUðaÞ, we also have

½ ~ALðaÞ; ~AUðaÞ;a�ðOÞ½ ~BLðaÞ; ~BUðaÞ;a�

Z
~ALðaÞ

~BUðaÞ
;
~AUðaÞ

~BLðaÞ
;a

� �
: (2.5)

Additionally,

~kð!Þ½ ~ALðaÞ; ~AUðaÞ;a� Z
½k ~ALðaÞ; k ~AUðaÞ;a� if kO0;

½k ~AUðaÞ; k ~ALðaÞ;a� if k!0:

(

(2.6)

Definition 2.5. Let ~A, ~B2Fs and for each l2(0,1), define

the metric rl by

rlð ~A; ~BÞ Z jdð ~A; ~0; lÞKdð ~B; ~0; lÞj:

Definition 2.6. For ~A, ~B2Fs and each l2(0,1), relations

‘3, z’ on Fs are defined by

~A3 ~B iff dð ~A; ~0; lÞ!dð ~B; ~0; lÞ;

~Az ~B iff dð ~A; ~0; lÞ Z dð ~B; ~0; lÞ:

Using Definition 2.6 and the ordering relations !, Z
defined on <, then the following Properties 2.7 and 2.8 can

be proved.

Property 2.7. For ~A ~B2Fs and each l2(0,1), the ordering

relations 3; z defined on Fs satisfy the law of trichotomy.
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Namely, one and only one of the three relations of ~A3 ~B,
~Az ~B, ~B3 ~A must hold.

Property 2.8. For ~A, ~B, ~C 2Fs and each l2(0,1), the

ordering relations 3, z defined on Fs satisfy the following

axioms:

ð1+Þ ~A3z~A;

ð2+Þ ~A3z~B; and ~B3z~A; then ~Az ~B;

ð3+Þ ~A3z~B; and ~B3z~C; then ~A3z~C:

From Properties 2.7 and 2.8, we know that the ordering

relations 3, z on Fs are linear order.

Property 2.9. For ~A, ~B, k 2Fs and each l2(0,1), the

following two characteristics hold:

ð1+Þ dð ~AðCÞ ~B; ~0; lÞ Z dð ~A; ~0; lÞCdð ~B; ~0; lÞ;
ð2+Þ dðk ~A; ~0; lÞ Z k dð ~A; ~0; lÞ:

Proof. (18) By (2.3), we know

~AðCÞ ~B Z g
0%a%1

½ ~ALðaÞC ~BLðaÞ; ~AUðaÞC ~BUðaÞ;a�;

then by Definition 2.4,

dð ~AðCÞ ~B; ~0; lÞ

Z

ð1

0
½lð ~ALðaÞC ~BLðaÞÞC ð1 KlÞð ~AUðaÞC ~BUðaÞÞ�da

Z dð ~A; ~0; lÞCdð ~B; ~0; lÞ:

(28) By (2.6) and Definition 2.4, dðk ~A; ~0; lÞZk dð ~A; ~0; lÞ

is proved. ,

Property 2.10. For ~A, ~B, ~C 2Fs and each l2(0,1), metric

rl satisfies the following three metric axioms:

ð1+Þ rlð ~A; ~BÞ Z 0 iff ~Az ~B;
ð2+Þ rlð ~A; ~BÞR0;
ð3+Þ rlð ~A; ~BÞCrlð ~B; ~CÞRrlð ~A; ~CÞ:

Proof. (18) and (28) can be proved by Definition 2.6 and the

characters of the ordering relations !, Z defined on <.

Because

rlð ~A; ~BÞCrlð ~B; ~CÞ

Z jdð ~A; ~0; lÞKdð ~B; ~0; lÞjC jdð ~B; ~0; lÞKdð ~C; ~0; lÞj

R jdð ~A; ~0; lÞKdð ~C; ~0; lÞj

Z rlð ~A; ~CÞ; ð3+Þ holds: ,

Remark 2.11. By Property 2.10, for each l2(0,1), (rl, Fs)

is a metric space in the fuzzy sense.

Remark 2.12. Let FP Z f ~aja2<g be the family of all fuzzy

points on <Z ðKN;NÞ. Obviously, FP3Fs, by Definitions

2.4 and 2.5, when ~a, ~b2FP, for each l2(0,1), we have

dð ~a; ~0; lÞZa, dð ~b; ~0; lÞZb, and rlð ~a; ~bÞZ jaKbj. When

a; b2<, by Definition 2.4, we have d0(a,0)Za, d0(b,0)Zb,

and r0ða; bÞZ jd0ða; 0ÞKd0ðb; 0ÞjZ jaKbj. Thus, r0 is
the metric function on <. Meanwhile, we know that ~a2
FP4a2< is one-to-one mapping from FP to < and

satisfies the following relations:
(18) For each l2(0,1), dð ~a; ~0; lÞZaZd0ða; 0Þ,

rlð ~a; ~bÞZ jaKbjZr0ða; bÞ, for all a, b2<.
(28) For each l2(0,1), the relation of three metric spaces

ð<; r0Þ, (FP,rl), (Fs,rl) is ð<; r0ÞhðFP; rlÞ3ðFs; rlÞ.

That is, metric space (Fs,rl) is one extension of real

metric space ð<; r0Þ.
3. Valuation by using the crisp DCF model

The crisp DCF model is a well-known approach to

valuation (see, e.g. Brigham, 1992; Copeland et al., 1994;

Sharpe et al., 1999), whereby estimated future cash flows

are ‘discounted’ at an interest rate (also called: ‘rate of

return’), that reflects the perceived riskiness of the cash

flows. The discount rate reflects two things: one is the time

value of the money (investors would rather have cash

immediately than having to wait and must therefore be

compensated by paying for the delay); the other is the risk

premium that reflects the extra return investors demand

because they want to be compensated for the risk that the

cash flow might not materialize after all. In other words, the

valuation based on the DCF approach is the future expected

cash flow discounted at a rate that reflects the riskiness of

the cash flow.

The generalized DCF model such as Fig. 2 describes the

return of a financial asset offering the investor a cash-flow

stream, and today’s intrinsic value is calculated as the

present value of an infinite cash-flow stream.

From Fig. 2, the present value at time t for each time tCj,

jZ1,2,. can be expressed as:

AtC1 Z
DtC1

1 CktC1

;

AtC2 Z
DtC2

ð1 CktC1Þð1 CktC2Þ
;/;

AtCT Z
DtCT

ð1 CktC1Þð1 CktC2Þ;/; ð1 CktCT Þ
;/:

Therefore, the intrinsic value in a crisp model can now be

expressed as the present value of expected future cash flows

at time t that is given by

V	
t Z

Xn

iZ1

Yi

jZ1

1

1 CktCj

" #
DtCi; t Z 0; 1; 2;.; (3.1)

where
n:
 life of the asset.
V	
t :
 the intrinsic value at time t of an infinite cash-flow

stream.



Fig. 2. Infinite cash-flow stream and present value at time t.
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DtCi:
 cash flow in period t.
ktCj
 discount rate at time tCj, reflecting the riskiness of

the estimated cash flows; or required rate of return,

the investor considers the returns available on other

investments.
Formula (3.1) is a generalized DCF model in the sense

that the time pattern of DtCi should be a non-negative real

number. It means that DtCi may be rising, falling, or

constant, or it may be fluctuated randomly. Generally

speaking, when the future cash flows of a company or an

asset follow a systematic pattern, some extensions and

applications from the basic model can be derived easily. For

example, the dividend discount model is a specialized case

of equity valuation and the value of a stock is the present

value of expected future dividends.

In real economic environment, the companies go through

life cycle. Such like some high-tech companies, their

operation usually have the following pattern with regard

to the economic cycle: during the early part of their lives,

the company’s growth rate is higher than the average level

of the economy’s growth; then match the economy’s

growth; and finally lower than that of the economy’s

growth. In other words, the cash flow (D) of a specific asset

for each year should depend on the individual company’s

growth rate (g). If the discount rate in each period is

supposed to equalize, meaning kZk1Zk2Z/ZkTZ/,

and k is a positive real number, then (3.1) can be simplified

as

V	
0 Z

XN
tZ1

Dt

ð1 CkÞt
; (3.2)

where DtZDtK1(1Cgt). It means that Dt is a non-negative

random variable with respect to gt. In practice, unfortu-

nately, the investor cannot use (3.2) to calculate the intrinsic

value in its present form through crisp convergent formula,

so we assume that most of the investors would eventually

finance the asset at a default value after holding it for n

years. Namely, the specific asset has uncertain cash flows

during a certain time period n and finally sold at price Pn.

Hence, (3.2) can be modified by

V	
0 Z

Xn

tZ1

Dt

ð1 CkÞt
C

Pn

ð1 CkÞn
(3.3)
where DtZDtK1(1Cgt), tZ1,2,.,n. Note that (3.3) is

usually regarded as a valuation model for the non-constant

growth stocks. Similarly, if gtZ0 (i.e. fixed cash flows Dt

such as the payments of interests) and k, Pn are, respectively

regarded as the yields-to-maturity (YTM) and par value,

then (3.3) becomes a classical bond valuation model.

In this case, if gZg1Zg2Z/ZgnZ/, and

lim
n/N

Pn Z 0;

then we can get the special case of (3.3) as below:

V	
0 Z lim

n/N

Xn

tZ1

Dt

ð1 CkÞt
C

Pn

ð1 CkÞn

 !

Z lim
n/N

Xn

tZ1

D0ð1 CgÞt

ð1 CkÞt
Z

D0ð1 CgÞ

k Kg
; (3.4)

where kOg. That is so-called the Gordon Model (see, e.g.

Gordon, 1962). Note that

lim
n/N

1

ð1 CkÞn
Z 0;

and k is a positive real number. Moreover, if gZ0, (3.4) can

be simplified as

V	
0 Z lim

n/N

Xn

tZ1

Dt

ð1 CkÞt
C

Pn

ð1 CkÞn

 !
Z

D0

k
; (3.5)

such a model is often used to evaluate the intrinsic value of

preferred stocks. In other words, both (3.4) and (3.5) may be

regarded as the special cases of (3.3).

However, when n is finite, it is quite difficult for typical

investors to precisely predict the future price Pn at a certain

value for a long-term period, so the present value V	
0 in (3.3)

cannot be calculated directly. Also, it is difficult to suppose

that the investors can predict a large number of gn. That is

why the general case is usually restricted to two or three

stage models (Sorensen & Williamson, 1985).
4. Valuation by using the FDCF model

Due to the difficulties of precisely estimating the future

cash flows, the discount rate (or the required rate of return),

and the price at the nth year, the investors who apply
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the classical (crisp) DCF model to evaluate the intrinsic

value of a specific asset often need to make several

assumptions about the cash flow and the discount rate, and

further to estimate them by using educated guesses or other

statistical skills. For example, sometimes it is more realistic

for the investor to additionally estimate these parameters in

DCF model by linking the growth rate (g) with the other

financial data such as ROE, P/E ratio or pay-out, instead

estimating g directly (see, e.g. Leibowitz & Kogelman,

1994; Sorensen & Williamson, 1985).

On the other hand, regarding the acquisition of discount

rate (k) (or the required rate of return), it is usually derived

from the CAPM framework considering the risk factor,

market expected rate of return, and expectations about the

risk-free rate (Sharpe et al., 1999). However, since either the

financial data or g are uncertain, these magnitudes should be

more suitable to be directly considered as fuzzy numbers by

fuzzifying g and k in order to simplify the arithmetic

operations. Based on this, the fuzzy method defined in

Section 2 is a more effective tool to evaluate the intrinsic

value when future cash flows, discount rate, and growth rate

cannot be precisely estimated as well as the risks. In this

section, we will derive a FDCF model from Section 3 where

the crisp DCF model has been surveyed.

First, we recall the crisp DCF model mentioned in (3.3)

and let

Gh
Xn

tZ1

Dt

ð1 CkÞt

Z
Xn

tZ1

D0ð1 Cg1Þð1 Cg2Þ/ð1 CgtÞ

ð1 CkÞt
;

H h
Pn

ð1 CkÞn
;

(4.1)

where nR1, then (3.3) can be simplified to write:

V	
0 Z G CH: (4.2)

Next, we fuzzify D0, gj (jZ1,2,.,t), k and Pn as

triangular fuzzy numbers ~D0, ~gj, ~k, and ~Pn corresponding to
~GLðaÞ Z
Xn

tZ1

ðD0 K ð1 KaÞu1Þð1 Cg1 K ð1 KaÞu13Þð1 Cg2 K ð

ð1 Ck C ð1 KaÞu

~GUðaÞ Z
Xn

tZ1

ðD0 C ð1 KaÞu2Þð1 Cg1 C ð1 KaÞu14Þð1 Cg2 C

ð1 Ck K ð1 KaÞu
the crisp intervals [D0Ku1,D0Cu2], [gjKuj3,gjCuj4],

[kKu5,kCu6], and [PnKu7,PnCu8], respectively, and

then yield

~D0 Z ðD0 Ku1;D0;D0 Cu2Þ; (4.3)

~gj Z ðgj Kuj3; gj; gj Cuj4Þ; j Z 1; 2;.; t; (4.4)

~k Z ðk Ku5; k; k Cu6Þ; (4.5)
~Pn Z ðPn Ku7;Pn;Pn Cu8Þ; (4.6)

where u1, u2, uj3, uj4, u5, u6, u7, and u8 may be

appropriately determined by the decision maker to satisfy

the following conditions:

0!u1!D0; 0!u2; (4.7)

0!uj3!gj; 0!uj4; j Z 1; 2;.; t; (4.8)

0!u5!k; 0!u6; (4.9)

0!u7!Pn; 0!u8: (4.10)

Using (4.3) to (4.6) to fuzzify (4.1), we have

~G Z
Xn

tZ1

½ ~D0ð!Þð ~1ðCÞ ~g1Þð!Þð ~1ðCÞ ~g2Þð!Þ/ð!Þ

!ð ~1ðCÞ ~gtÞ�ðOÞð ~1ðCÞ ~kÞt; (4.11)

~H Z ~PnðOÞð ~1ðCÞ ~kÞn; nR1; (4.12)

where the left and right end points of a-cut of ~D0, ~gj, ~k, and
~Pn are

D0LðaÞ Z D0 K ð1 KaÞu1ðO0Þ;

~D0UðaÞ Z D0 C ð1 KaÞu2ðO0Þ;

~gjLðaÞ Z gj K ð1 KaÞuj3ðO0Þ;

~gjUðaÞ Z gj C ð1 KaÞuj4ðO0Þ j Z 1; 2;.; t;

~kLðaÞ Z k K ð1 KaÞu5ðO0Þ;

~kUðaÞ Z k C ð1 KaÞu6ðO0Þ;

~PnLðaÞ Z Pn K ð1 KaÞu7ðO0Þ;

~PnUðaÞ Z Pn C ð1 KaÞu8ðO0Þ:

(4.13)

From (4.11) to (4.13), (2.3) to (2.6), the left and right end

points of a-cut of ~G, ~H can be written as

1 KaÞu23Þ/ð1 Cgt K ð1 KaÞut3Þ

6Þ
n

;

ð1 KaÞu24Þ/ð1 Cgt C ð1 KaÞut4Þ

5Þ
n

(4.14)

and

~HLðaÞ Z
Pn K ð1 KaÞu7

ð1 Ck C ð1 KaÞu6Þ
n
;

~HUðaÞ Z
Pn C ð1 KaÞu8

ð1 Ck K ð1 KaÞu5Þ
n
:

(4.15)

By Definition 2.4 and (4.15), for each l2(0,1), using l-

signed distance method to defuzzify ~H, we have the

following three situations of H	
l :
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for nR3,

H	
l hdð ~H; ~0;lÞ

Z

ð1

0

lðPn Kð1KaÞu7Þ

ð1CkCð1KaÞu6Þ
n

C
ð1KlÞðPn Cð1KaÞu8Þ

ð1CkKð1KaÞu5Þ
n

� �
da

Z
l

u6

Pn Cð1CkÞ
u7

u6

� �
1

KnC1

� �
½ð1CkCu6Þ

KnC1

Kð1CkÞKnC1�C
lu7

u2
6

1

KnC2

� �
½ð1CkÞKnC2

Kð1CkCu6Þ
KnC2�C

1Kl

u5

Pn Cð1CkÞ
u8

u5

� �

!
1

KnC1

� �
½ð1CkÞKnC1 Kð1CkKu5Þ

KnC1�

K
ð1KlÞu8

u2
5

1

KnC2

� �
½ð1CkÞKnC2

Kð1CkKu5Þ
KnC2�; ð4:16Þ

for nZ2,

H	
l hdð ~H; ~0;lÞ

Z

ð1

0

lðP2 Kð1KaÞu7Þ

ð1CkCð1KaÞu6Þ
2

C
ð1KlÞðP2 Cð1KaÞu8Þ

ð1CkKð1KaÞu5Þ
2

� �
da

Z
Kl

u6

P2 Cð1CkÞ
u7

u6

� �
½ð1CkCu6Þ

K1 Kð1CkÞK1�

K
lu7

u6

ln 1C
u6

1Ck

� �
K

1Kl

u5

P2 Cð1CkÞ
u8

u5

� �
½ð1CkÞK1

Kð1CkKu5Þ
K1�C

ð1KlÞu8

u2
5

ln 1K
u5

1Ck

� �
; ð4:17Þ

for nZ1,

H	
l hdð ~H; ~0;lÞ

Z
l

u6

P1 Cð1CkÞ
u7

u6

� �
ln 1C

u6

1Ck

� �
K

lu7

u6

K
1Kl

u5

P1 Cð1CkÞ
u8

u5

� �
ln 1K

u5

1Ck

� �
K

ð1KlÞu8

u5

:

ð4:18Þ

For each l2(0,1), in order to obtain the general result of

defuzzification of ~G by using l-signed distance method, we

let

t2f1;2;.;ng; qZ1Ka;

and

Ftða1;a2;.;atC1;b1;b2;.btC1;c;eÞ

Z

ð1

0

ða1ð1KaÞCb1Þða2ð1KaÞCb2Þ/ðatC1ð1KaÞCbtC1Þ

ðcð1KaÞCeÞt
da

Z

ð1

0

ða1qCb1Þða2qCb2Þ/ðatC1qCbtC1Þ

ðcqCeÞt
dq: ð4:19Þ
From (4.19), we conduct the coefficient of qr of (a1qC
b1)(a2qCb2)/(atC1qCbtC1) as below:

Let r2{1,2,.,tC1}, and Ar is a set of (i1,i2,.,ir, irC1,

irC2,.,itC1) satisfied the following conditions (18), (28).
(18) 1% i1! i2 !/! ir % tC1 and 1% irC1! irC2!
/! itC1% tC1.
(28) there are no same value in i1,i2,.,ir, irC1,irC2,.,

itC1, and they are combined as {1,2,.,tC1}.

Thus, Ar has

t C1

r

� �
Z

ðt C1Þ!

r!ðt C1 KrÞ!

elements in all, and
P

r represents the sum of ai1
ai2

/
air

birC1
birC2

/bitC1
in (i1,i2,.,ir, irC1,irC2,.,itC1)2Ar then

the coefficient of qr can be denoted asP
r ai1

ai2
/air

birþ1
birþ2

/bitþ1
:

Again, we let zZcqCe, then the numerator of integration

in (4.19) is

ða1qCb1Þða2qCb2Þ/ðatC1qCbtC1Þ

Zb1b2 /btC1 C
P

1 ai1
bi2

bi3
/bitC1

qC/

C
P

r ai1
ai2

/air
birC1

birC2
/bitC1

qr C/

C
P

tK1 ai1
ai2

/aitK1
bit

bitC1
qtK1

C
P

t ai1
ai2

/ait
bitC1

qt Ca1a2 /atC1qtC1

Zb1b2 /btC1 C
P

1 ai1
bi2

bi3
/bitC1

zKe
c

� �
C/

C
P

r ai1
ai2

/air
birC1

birC2
/bitC1

zKe
c

� �r
C/

C
P

tK1 ai1
ai2

/aitK1
bit

bitC1

zKe
c

� �tK1

C
P

t ai1
ai2

/ait
bitC1

zKe
c

� �t
Ca1a2 /atC1

zKe
c

� �tC1

Z
1

ctC1
ctC1b1b2 /btC1 CctP

1 ai1
bi2

bi3
/bitC1

ðzKeÞ

"

C/CctC1KrP
r ai1

ai2
/air

birC1
birC2

/bitC1

!
Xr

kZ0

r

k

0
@
1
AðKeÞrKkzk C/Cc2P

tK1 ai1
ai2

/aitK1
bit

bitC1

!
XtK1

kZ0

tK1

k

0
@

1
AðKeÞtK1Kkzk Cc

P
t ai1

ai2
/ait

bitC1

!
Xt

kZ0

t

k

0
@
1
AðKeÞtKkzk Ca1a2 /atC1

!
XtC1

kZ0

tC1

k

0
@

1
AðKeÞtC1Kkzk

3
5h

1

ctC1
hðzÞ: ð4:20Þ



J.-S. Yao et al. / Expert Systems with Applications 28 (2005) 209–222216
By (4.19), (4.20) and zZcqCe, we obtain

when t2{1,2,.,n},

Ftða1;a2;.;atC1;b1;b2;.btC1;c;eÞ

h
1

ctC2

ðcCe

e

1

zt
hðzÞdz

Z
1

ctC2

ðcCe

e
ctC1b1b2/btC1zKt

"

CctP
1 ai1

bi2
bi3

/bitC1
ðzKtC1 KezKtÞC/

CctC1KrP
r ai1

ai2
/air

birC1
birC2

/bitC1

!
Xr

kZ0

r

k

 !
ðKeÞrKkzKtCk C/

Cc2P
tK1 ai1

ai2
/aitK1

bit
bitC1

XtK1

kZ0

tK1

k

 !
ðKeÞtK1KkzKtCk

Cc
P

t ai1
ai2

/ait
bitC1

Xt

kZ0

t

k

 !
ðKeÞtKkzKtCk

Ca1a2/atC1

XtC1

kZ0

tC1

k

 !
ðKeÞtC1KkzKtCk

#
dz

Z
1

ctC2

ctC1

KtC1
b1b2/btC1ððcCeÞKtC1 KeKtC1Þ

"

CctP
1 ai1

bi2
bi3

/bitC1

1
KtC2

ððcCeÞKtC2 KeKtC2Þ
�

K
e

KtC1
ððcCeÞKtC1 KeKtC1Þ

�
C/

CctC1KrP
r ai1

ai2
/air

birC1
birC2

/bitC1

!
Xr

kZ0

r

k

 !
ðKeÞrKk 1

KtCkC1

� �
ððcCeÞKtCkC1

KeKtCkC1ÞC/Cc2P
tK1 ai1

ai2
/aitK1

bit
bitC1

!
XtK2

kZ0

tK1

k

 !
ðKeÞtK1Kk 1

KtCkC1

� �"

!ððcCeÞKtCkC1 KeKtCkC1ÞCln 1C
c

e

� �#

Cc
P

t ai1
ai2

/ait
bitC1

XtK2

kZ0

t

k

 !
ðKeÞtKk 1

KtCkC1

� �"

!ððcCeÞKtCkC1 KeKtCkC1ÞKte ln 1C
c

e

� �
Ce

#

Cai1
ai2

/ait

XtK2

kZ0

tC1

k

 !
ðKeÞtC1Kk 1

KtCkC1

� �"

!ððcCeÞKtCkC1 KeKtCkC1ÞC
tC1

tK1

 !
e2 ln 1C

c

e

� �
C
XtC1

kZt

tC1

k

 !
ðKeÞtC1Kk 1

KtCkC1

� �

!ððcCeÞKtCkC1 KeKtCkC1Þ

#
: ð4:21Þ
Then, by (4.14), (4.19), and (4.21), for each l2(0,1),

using l-signed distance method to defuzzify ~G, then we

obtain

G	
l hdð ~G; ~0; lÞ Z

ð1

0
½l ~GLðaÞC ð1 KlÞ ~GUðaÞ�da

Z
Xn

tZ1

½lFtðKu1;Ku13;Ku23;.;Kut3;D0; 1 Cg1;

1 Cg2;.; 1 Cgt;u6; 1 CkÞ

C ð1 KlÞFtðu2;u14;u24;.;ut4;D0; 1 Cg1;

1 Cg2;.; 1 Cgt;Ku5; 1 CkÞ�: ð4:22Þ

Therefore, by (4.1) to (4.6), (4.11), (4.12), (4.16) to

(4.18), (4.22) and Property 2.9, we can obtain the following

Theorem 4.1.

Theorem 4.1. Utilizing (4.3) to (4.6) to fuzzify (4.1), we

have
(18) fuzzy intrinsic value ~V
	
0 Z ~GðCÞ ~H where ~G in (4.11),

~H in (4.12);
(28) the estimation of intrinsic value in the fuzzy sense is

V̂
	
0l hdð ~V

	
0 ; ~0; lÞ Z dð ~G; ~0; lÞCdð ~H; ~0; lÞ Z H	

l CG	
l ;

where H	
l in (4.16) to (4.18), G	

l in (4.22).

Remark 4.2. The relation between Theorem 4.1 and crisp

case is discussed in Section 6.1.
5. Numerical examples

In this section, we will illustrate the methodology given

in the preceding sections to evaluate the intrinsic value with

the following example under different l levels (lZ0.5, 0.2,

0.8).

In the event that we would like to hold an asset for n

years, and then sell it at a expected price Pn, so we can

employ Theorem 4.1 to compute the intrinsic value in the

fuzzy sense. Let nZ1,2,3, D0Z$2 (measuring unit in US

Dollar), kZ6%, gZ3%, PnZ$35 (measuring unit in US

Dollar). In addition, we can appropriately determine the

values of u1, u2, ut3, ut4, u5, u6, u7 and u8. Furthermore, in

order to find the relative errors between fuzzy case ðV̂
	
0lÞ and

crisp case ðV	
0 Þ, we let

r Z
V̂
	
0l KV	

0

V	
0

!100%;

and then we show the numerical results in Tables 1–3.



Table 1

The numerical comparisons of crisp case and fuzzy case for nZ3 with different l levels

Crisp

case

D0 k g1 g2 g3 Pn V	
0

2 0.06 0.03 0.03 0.03 35 35.053

Fuzzy

case

for lZ
0.5

D	
0l k	l g	1l g	2l g	

3l P	
nl u1 u2 u13 u23 u33 u14 u24 u34 u5 u6 u7 u8 V̂

	
0l

r(%)

2 0.06 0.03 0.03 0.03 35 0 0 0 0 0 0 0 0 0 0 0 0 35.053 0.153

2 0.06 0.03 0.03 0.03 35 0.01 0.01 0 0 0 0 0 0 0 0 0.01 0.01 35.054 0.153

1.9775 0.06 0.03 0.03 0.03 35 0.1 0.01 0 0 0 0 0 0 0 0 0.01 0.01 34.926 K0.211

2.0225 0.06 0.03 0.03 0.03 35 0.01 0.1 0 0 0 0 0 0 0 0 0.01 0.01 35.181 0.518

2 0.06 0.0278 0.03 0.03 35 0.01 0.01 0.01 0 0 0 0 0 0 0 0.01 0.01 35.029 0.082

2 0.06 0.03 0.0278 0.03 35 0.01 0.01 0 0.01 0 0 0 0 0 0 0.01 0.01 35.037 0.107

2 0.06 0.03 0.03 0.0278 35 0.01 0.01 0 0 0.01 0 0 0 0 0 0.01 0.01 35.046 0.13

2 0.06 0.0323 0.03 0.03 35 0.01 0.01 0 0 0 0.01 0 0 0 0 0.01 0.01 35.078 0.224

2 0.06 0.03 0.0323 0.03 35 0.01 0.01 0 0 0 0 0.01 0 0 0 0.01 0.01 35.07 0.2

2 0.06 0.03 0.03 0.0323 35 0.01 0.01 0 0 0 0 0 0.01 0 0 0.01 0.01 35.062 0.176

2 0.0578 0.03 0.03 0.03 35 0.01 0.01 0 0 0 0 0 0 0.01 0 0.01 0.01 35.481 1.375

2 0.0623 0.03 0.03 0.03 35 0.01 0.01 0 0 0 0 0 0 0 0.01 0.01 0.01 34.637 K1.037

2 0.06 0.03 0.03 0.03 34.9775 0.01 0.01 0 0 0 0 0 0 0 0 0.1 0.01 35.016 0.045

2 0.06 0.03 0.03 0.03 35.0225 0.01 0.01 0 0 0 0 0 0 0 0 0.01 0.1 35.091 0.261

1.9775 0.0623 0.0278 0.0278 0.0278 34.9775 0.1 0.01 0.01 0.01 0.01 0 0 0 0 0.01 0.1 0.01 34.427 K1.636

1.8775 0.0648 0.0253 0.0253 0.0253 34.8775 0.5 0.01 0.02 0.02 0.02 0 0 0 0 0.02 0.5 0.01 33.226 K5.068

2.0225 0.0553 0.0348 0.0348 0.0348 35.1225 0.01 0.1 0 0 0 0.02 0.02 0.02 0.02 0 0.01 0.5 36.424 4.069

Fuzzy

case

for lZ
0.2

2.003 0.0603 0.0303 0.0303 0.0303 35.003 0.01 0.01 0 0 0 0 0 0 0 0 0.01 0.01 35.082 0.235

1.994 0.0603 0.0303 0.0303 0.0303 35.003 0.1 0.01 0 0 0 0 0 0 0 0 0.01 0.01 35.031 0.089

2.039 0.0603 0.0303 0.0303 0.0303 35.003 0.01 0.1 0 0 0 0 0 0 0 0 0.01 0.01 35.286 0.818

2.003 0.0603 0.0294 0.0303 0.0303 35.003 0.01 0.01 0.01 0 0 0 0 0 0 0 0.01 0.01 35.072 0.206

2.003 0.0603 0.0303 0.0294 0.0303 35.003 0.01 0.01 0 0.01 0 0 0 0 0 0 0.01 0.01 35.076 0.216

2.003 0.0603 0.0303 0.0303 0.0294 35.003 0.01 0.01 0 0 0.01 0 0 0 0 0 0.01 0.01 35.079 0.225

2.003 0.0603 0.0339 0.0303 0.0303 35.003 0.01 0.01 0 0 0 0.01 0 0 0 0 0.01 0.01 35.122 0.348

2.003 0.0603 0.0303 0.0339 0.0303 35.003 0.01 0.01 0 0 0 0 0.01 0 0 0 0.01 0.01 35.108 0.309

2.003 0.0603 0.0303 0.0303 0.0339 35.003 0.01 0.01 0 0 0 0 0 0.01 0 0 0.01 0.01 35.095 0.271

2.003 0.0594 0.0303 0.0303 0.0303 35.003 0.01 0.01 0 0 0 0 0 0 0.01 0 0.01 0.01 35.51 1.457

2.003 0.0639 0.0303 0.0303 0.0303 35.003 0.01 0.01 0 0 0 0 0 0 0 0.01 0.01 0.01 34.665 K0.958

2.003 0.0603 0.0303 0.0303 0.0303 34.994 0.01 0.01 0 0 0 0 0 0 0 0 0.1 0.01 35.067 0.191

2.003 0.0603 0.0303 0.0303 0.0303 35.039 0.01 0.01 0 0 0 0 0 0 0 0 0.01 0.1 35.143 0.407

1.994 0.0639 0.0294 0.0294 0.0294 34.994 0.1 0.01 0.01 0.01 0.01 0 0 0 0 0.01 0.1 0.01 34.58 K1.199

1.954 0.0679 0.0284 0.0284 0.0284 34.954 0.5 0.01 0.02 0.02 0.02 0 0 0 0 0.02 0.5 0.01 33.825 K3.357

2.039 0.0584 0.0379 0.0379 0.0379 35.199 0.01 0.1 0 0 0 0.02 0.02 0.02 0.02 0 0.01 0.5 36.727 4.934

Fuzzy

case

for lZ
0.8

1.997 0.0597 0.0297 0.0297 0.0297 34.997 0.01 0.01 0 0 0 0 0 0 0 0 0.01 0.01 35.025 0.071

1.961 0.0597 0.0297 0.0297 0.0297 34.997 0.1 0.01 0 0 0 0 0 0 0 0 0.01 0.01 34.821 K0.511

2.006 0.0597 0.0297 0.0297 0.0297 34.997 0.01 0.1 0 0 0 0 0 0 0 0 0.01 0.01 35.076 0.217

1.997 0.0597 0.0261 0.0297 0.0297 34.997 0.01 0.01 0.01 0 0 0 0 0 0 0 0.01 0.01 34.986 K0.041

1.997 0.0597 0.0297 0.0261 0.0297 34.997 0.01 0.01 0 0.01 0 0 0 0 0 0 0.01 0.01 34.999 K0.003

1.997 0.0597 0.0297 0.0297 0.0261 34.997 0.01 0.01 0 0 0.01 0 0 0 0 0 0.01 0.01 35.012 0.035

1.997 0.0597 0.0306 0.0297 0.0297 34.997 0.01 0.01 0 0 0 0.01 0 0 0 0 0.01 0.01 35.035 0.1

1.997 0.0597 0.0297 0.0306 0.0297 34.997 0.01 0.01 0 0 0 0 0.01 0 0 0 0.01 0.01 35.031 0.09

1.997 0.0597 0.0297 0.0297 0.0306 34.997 0.01 0.01 0 0 0 0 0 0.01 0 0 0.01 0.01 35.028 0.08

1.997 0.0561 0.0297 0.0297 0.0297 34.997 0.01 0.01 0 0 0 0 0 0 0.01 0 0.01 0.01 35.451 1.29

(continued on next page)
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From Tables 1–3, if uihu, and if u/0, then the fuzzy

case of Theorem 4.1 will approach the crisp case. It implies

that if u smaller is, then the estimated intrinsic value of

fuzzy case is getting closer to crisp case.

Furthermore, from the numerical results, we find that if l

is closer to 0, then the estimated intrinsic value V̂
	
0l is

greater; if l is closer to 1, then the estimated intrinsic value

V̂
	
0l is smaller.
6. Discussions

Because we are interested in applying the fuzzy logic to

solve the classical DCF model for valuation in which the

cash flows and the discount rate are uncertainty, we have

developed a FDCF model that allows us to employ

triangular fuzzy numbers to explicitly analyze and provide

insights into how the intrinsic value could be impacted by

the vague levels of cash flow, growth rate, discount rate, and

future selling price. In conclusion, our work has provided

the following aspects for the proposed FDCF model.
6.1. The relation between Theorem 4.1 and crisp case

(in (3.3))

(a) In (4.14), (4.15), if we assume u1Zu2Zu5Zu6Z
u7Zu8Z0 and uj3Zuj4Z0 for all j, then we can obtain

~GLðaÞ Z ~GUðaÞ Z
Xn

tZ1

D0ð1 Cg1Þð1 Cg2Þ/ð1 CgtÞ

ð1 CkÞn
;

~HLðaÞ Z ~HUðaÞ Z
Pn

ð1 CkÞn
:

From Theorem 4.1 (18),

dð ~V
	
0 ; ~0; lÞ Z dð ~G; ~0; lÞCdð ~H; ~0; lÞ

Z

ð1

0
½l ~GLðaÞC ð1 KlÞ ~GUðaÞCl ~HLðaÞ

C ð1 KlÞ ~HUðaÞ�da

Z V	
0 ðinð3:3ÞÞ:

(b) In crisp case, if the investor only considers to hold the

specific asset until the nth year, by assuming PnZ0, then we

can obtain

V	
0 Z

Xn

tZ1

Dt

ð1 CkÞt
;

DtZDtK1(1Cgt), tZ1,2,.,n.

(c) Considering the fuzzy case in Theorem 4.1, if PnZ0,

u7Zu8Z0, then ~PnZ ~0 (i.e. a fuzzy point at 0). By (4.11)

and (4.12), we can obtain ~G (in (4.11)) and ~HZ ~0 (in

(4.12)). Thus, from Theorem 4.1 (18), the fuzzy intrinsic

value is ~V
	
0 Z ~GðCÞ ~0. That is the estimates intrinsic value

V̂
	
0l hdð ~V

	
0 ; ~0; lÞZdð ~G; ~0; lÞZG	

l (in Theorem 4.1 (28)).



Table 2

The numerical comparisons of crisp case and fuzzy case for nZ2 with different l levels

Crisp

case

D0 k g1 g2 g3 Pn V	
0

2 0.06 0.03 0.03 K 35 34.982

Fuzzy

case

for lZ
0.5

D	
0l k	l g	1l g	2l g	3l P	

nl u1 u2 u13 u23 u33 u14 u24 u34 u5 u6 u7 u8 V̂
	
0l

r(%)

2 0.06 0.03 0.03 – 35 0 0 0 0 – 0 0 – 0 0 0 0 34.982 K0.052

2 0.06 0.03 0.03 – 35 0.01 0.01 0 0 – 0 0 – 0 0 0.01 0.01 34.982 K0.052

1.9775 0.06 0.03 0.03 – 35 0.1 0.01 0 0 – 0 0 – 0 0 0.01 0.01 34.896 K0.298

2.0225 0.06 0.03 0.03 – 35 0.01 0.1 0 0 – 0 0 – 0 0 0.01 0.01 35.068 0.194

2 0.06 0.0278 0.03 – 35 0.01 0.01 0.01 0 – 0 0 – 0 0 0.01 0.01 34.965 K0.1

2 0.06 0.03 0.0278 – 35 0.01 0.01 0 0.01 – 0 0 – 0 0 0.01 0.01 34.973 K0.076

2 0.06 0.0323 0.03 – 35 0.01 0.01 0 0 – 0.01 0 – 0 0 0.01 0.01 34.998 K0.004

2 0.06 0.03 0.0323 – 35 0.01 0.01 0 0 – 0 0.01 – 0 0 0.01 0.01 34.99 K0.029

2 0.0578 0.03 0.03 – 35 0.01 0.01 0 0 – 0 0 – 0.01 0 0.01 0.01 35.273 0.781

2 0.0623 0.03 0.03 – 35 0.01 0.01 0 0 – 0 0 – 0 0.01 0.01 0.01 34.696 K0.869

2 0.06 0.03 0.03 – 34.9775 0.01 0.01 0 0 – 0 0 – 0 0 0.1 0.01 34.942 K0.167

2 0.06 0.03 0.03 – 35.0225 0.01 0.01 0 0 – 0 0 – 0 0 0.01 0.1 35.022 0.062

1.9775 0.0623 0.0278 0.0278 – 34.9775 0.1 0.01 0.01 0.01 – 0 0 – 0 0.01 0.1 0.01 34.547 K1.295

1.8775 0.0648 0.0253 0.0253 – 34.8775 0.5 0.01 0.02 0.02 – 0 0 – 0 0.02 0.5 0.01 33.666 K3.812

2.0225 0.0553 0.0348 0.0348 – 35.1225 0.01 0.1 0 0 – 0.02 0.02 K 0.02 0 0.01 0.5 35.971 2.774

Fuzzy

case

for lZ
0.2

2.003 0.0603 0.0303 0.0303 – 35.003 0.01 0.01 0 0 – 0 0 – 0 0 0.01 0.01 35.002 0.005

1.994 0.0603 0.0303 0.0303 – 35.003 0.1 0.01 0 0 – 0 0 – 0 0 0.01 0.01 34.967 K0.093

2.039 0.0603 0.0303 0.0303 – 35.003 0.01 0.1 0 0 – 0 0 – 0 0 0.01 0.01 35.14 0.4

2.003 0.0603 0.0294 0.0303 – 35.003 0.01 0.01 0.01 0 – 0 0 – 0 0 0.01 0.01 34.995 K0.014

2.003 0.0603 0.0303 0.0294 – 35.003 0.01 0.01 0 0.01 – 0 0 – 0 0 0.01 0.01 34.999 K0.004

2.003 0.0603 0.0339 0.0303 – 35.003 0.01 0.01 0 0 – 0.01 0 – 0 0 0.01 0.01 35.029 0.082

2.003 0.0603 0.0303 0.0339 – 35.003 0.01 0.01 0 0 – 0 0.01 – 0 0 0.01 0.01 35.015 0.043

2.003 0.0594 0.0303 0.0303 – 35.003 0.01 0.01 0 0 – 0 0 – 0.01 0 0.01 0.01 35.294 0.839

2.003 0.0639 0.0303 0.0303 – 35.003 0.01 0.01 0 0 – 0 0 – 0 0.01 0.01 0.01 34.715 K0.813

2.003 0.0603 0.0303 0.0303 – 34.994 0.01 0.01 0 0 – 0 0 – 0 0 0.1 0.01 34.986 K0.04

2.003 0.0603 0.0303 0.0303 – 35.039 0.01 0.01 0 0 – 0 0 – 0 0 0.01 0.1 35.066 0.189

1.994 0.0639 0.0294 0.0294 – 34.994 0.1 0.01 0.01 0.01 – 0 0 – 0 0.01 0.1 0.01 34.656 K0.984

1.954 0.0679 0.0284 0.0284 – 34.954 0.5 0.01 0.02 0.02 – 0 0 – 0 0.02 0.5 0.01 34.114 K2.531

2.039 0.0584 0.0379 0.0379 – 35.199 0.01 0.1 0 0 – 0.02 0.02 – 0.02 0 0.01 0.5 36.211 3.461

Fuzzy

case

for lZ
0.8

1.997 0.0597 0.0297 0.0297 – 34.997 0.01 0.01 0 0 – 0 0 – 0 0 0.01 0.01 34.962 K0.11

1.961 0.0597 0.0297 0.0297 – 34.997 0.1 0.01 0 0 – 0 0 – 0 0 0.01 0.01 34.824 K0.504

2.006 0.0597 0.0297 0.0297 – 34.997 0.01 0.1 0 0 – 0 0 – 0 0 0.01 0.01 34.996 K0.011

1.997 0.0597 0.0261 0.0297 – 34.997 0.01 0.01 0.01 0 – 0 0 – 0 0 0.01 0.01 34.935 K0.186

1.997 0.0597 0.0297 0.0261 – 34.997 0.01 0.01 0 0.01 – 0 0 – 0 0 0.01 0.01 34.948 K0.147

1.997 0.0597 0.0306 0.0297 – 34.997 0.01 0.01 0 0 – 0.01 0 – 0 0 0.01 0.01 34.968 K0.091

1.997 0.0597 0.0297 0.0306 – 34.997 0.01 0.01 0 0 – 0 0.01 – 0 0 0.01 0.01 34.965 K0.1

1.997 0.0561 0.0297 0.0297 – 34.997 0.01 0.01 0 0 – 0 0 – 0.01 0 0.01 0.01 35.253 0.722

1.997 0.0606 0.0297 0.0297 – 34.997 0.01 0.01 0 0 – 0 0 – 0 0.01 0.01 0.01 34.676 K0.926

1.997 0.0597 0.0297 0.0297 – 34.961 0.01 0.01 0 0 – 0 0 – 0 0 0.1 0.01 34.897 K0.293

1.997 0.0597 0.0297 0.0297 – 35.006 0.01 0.01 0 0 – 0 0 – 0 0 0.01 0.1 34.978 K0.064

1.961 0.0606 0.0261 0.0261 – 34.961 0.1 0.01 0.01 0.01 – 0 0 – 0 0.01 0.1 0.01 34.438 K1.607

1.801 0.0616 0.0221 0.0221 – 34.801 0.5 0.01 0.02 0.02 – 0 0 – 0 0.02 0.5 0.01 33.218 K5.092

2.006 0.0521 0.0316 0.0316 – 35.046 0.01 0.1 0 0 – 0.02 0.02 – 0.02 0 0.01 0.5 35.728 2.081
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Table 3

The numerical comparisons of crisp case and fuzzy case for nZ1 with different l levels

Crisp

case

D0 k g1 g2 g3 Pn V	
0

2 0.06 0.03 – – 35 34.962

Fuzzy

case

for lZ
0.5

D	
0l k	l g	1l g	

2l g	3l P	
nl u1 u2 u13 u23 u33 u14 u24 u34 u5 u6 u7 u8 V̂

	
0l

r(%)

2 0.06 0.03 – – 35 0 0 0 – – 0 – – 0 0 0 0 34.962 K0.108

2 0.06 0.03 – – 35 0.01 0.01 0 – – 0 – – 0 0 0.01 0.01 34.962 K0.108

1.9775 0.06 0.03 – – 35 0.1 0.01 0 – – 0 – – 0 0 0.01 0.01 34.919 K0.233

2.0225 0.06 0.03 – – 35 0.01 0.1 0 – – 0 – – 0 0 0.01 0.01 35.006 0.017

2 0.06 0.0278 – – 35 0.01 0.01 0.01 – – 0 – – 0 0 0.01 0.01 34.954 K0.132

2 0.06 0.0323 – – 35 0.01 0.01 0 – – 0.01 – – 0 0 0.01 0.01 34.971 K0.083

2 0.0578 0.03 – – 35 0.01 0.01 0 – – 0 – – 0.01 0 0.01 0.01 35.112 0.319

2 0.0623 0.03 – – 35 0.01 0.01 0 – – 0 – – 0 0.01 0.01 0.01 34.815 K0.529

2 0.06 0.03 – – 34.9775 0.01 0.01 0 – – 0 – – 0 0 0.1 0.01 34.92 K0.229

2 0.06 0.03 – – 35.0225 0.01 0.01 0 – – 0 – – 0 0 0.01 0.1 35.005 0.014

1.9775 0.0623 0.0278 – – 34.9775 0.1 0.01 0.01 – – 0 – – 0 0.01 0.1 0.01 34.721 K0.797

1.8775 0.0648 0.0253 – – 34.8775 0.5 0.01 0.02 – – 0 – – 0 0.02 0.5 0.01 34.175 K2.356

2.0225 0.0553 0.0348 – – 35.1225 0.01 0.1 0 – – 0.02 – – 0.02 0 0.01 0.5 35.577 1.649

Fuzzy

case

for lZ
0.2

2.003 0.0603 0.0303 – – 35.003 0.01 0.01 0 – – 0 – – 0 0 0.01 0.01 34.975 K0.072

1.994 0.0603 0.0303 – – 35.003 0.1 0.01 0 – – 0 – – 0 0 0.01 0.01 34.957 K0.122

2.039 0.0603 0.0303 – – 35.003 0.01 0.1 0 – – 0 – – 0 0 0.01 0.01 35.045 0.128

2.003 0.0603 0.0294 – – 35.003 0.01 0.01 0.01 – – 0 – – 0 0 0.01 0.01 34.972 K0.081

2.003 0.0603 0.0339 – – 35.003 0.01 0.01 0 – – 0.01 – – 0 0 0.01 0.01 34.989 K0.033

2.003 0.0594 0.0303 – – 35.003 0.01 0.01 0 – – 0 – – 0.01 0 0.01 0.01 35.124 0.355

2.003 0.0639 0.0303 – – 35.003 0.01 0.01 0 – – 0 – – 0 0.01 0.01 0.01 34.827 K0.494

2.003 0.0603 0.0303 – – 34.994 0.01 0.01 0 – – 0 – – 0 0 0.1 0.01 34.958 K0.12

2.003 0.0603 0.0303 – – 35.039 0.01 0.01 0 – – 0 – – 0 0 0.01 0.1 35.043 0.122

1.994 0.0639 0.0294 – – 34.994 0.1 0.01 0.01 – – 0 – – 0 0.01 0.1 0.01 34.79 K0.601

1.954 0.0679 0.0284 – – 34.954 0.5 0.01 0.02 – – 0 – – 0 0.02 0.5 0.01 34.474 K1.504

2.039 0.0584 0.0379 – – 35.199 0.01 0.1 0 – – 0.02 – – 0.02 0 0.01 0.5 35.768 2.194

Fuzzy

case

for lZ
0.8

1.997 0.0597 0.0297 – – 34.997 0.01 0.01 0 – – 0 – – 0 0 0.01 0.01 34.95 K0.144

1.961 0.0597 0.0297 – – 34.997 0.1 0.01 0 – – 0 – – 0 0 0.01 0.01 34.88 K0.344

2.006 0.0597 0.0297 – – 34.997 0.01 0.1 0 – – 0 – – 0 0 0.01 0.01 34.967 K0.094

1.997 0.0597 0.0261 – – 34.997 0.01 0.01 0.01 – – 0 – – 0 0 0.01 0.01 34.936 K0.182

1.997 0.0597 0.0306 – – 34.997 0.01 0.01 0 – – 0.01 – – 0 0 0.01 0.01 34.953 K0.134

1.997 0.0561 0.0297 – – 34.997 0.01 0.01 0 – – 0 – – 0.01 0 0.01 0.01 35.099 0.283

1.997 0.0606 0.0297 – – 34.997 0.01 0.01 0 – – 0 – – 0 0.01 0.01 0.01 34.802 K0.565

1.997 0.0597 0.0297 – – 34.961 0.01 0.01 0 – – 0 – – 0 0 0.1 0.01 34.882 K0.338

1.997 0.0597 0.0297 – – 35.006 0.01 0.01 0 – – 0 – – 0 0 0.01 0.1 34.967 K0.095

1.961 0.0606 0.0261 – – 34.961 0.1 0.01 0.01 – – 0 – – 0 0.01 0.1 0.01 34.652 K0.993

1.801 0.0616 0.0221 – – 34.801 0.5 0.01 0.02 – – 0 – – 0 0.02 0.5 0.01 33.877 K3.209

2.006 0.0521 0.0316 – – 35.046 0.01 0.1 0 – – 0.02 – – 0.02 0 0.01 0.5 35.386 1.102
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6.2. The explanation of using the l-signed distance

In this paper, the use of l-signed distance is based on the

consideration of natural extension. The reasons for such

extension are interpreted as follows.

By Yao and Wu (2000), the signed distance of a on <

measured from the origin 0 is defined by d0(a,0)Za that can

be acquired by the characteristic of a real line, and such a

viewpoint can be extended to that of the signed distance of

fuzzy sets on Fs. Because fuzzy set ~Dð2FsÞ is not a real

number, we must consider the signed distance from the

membership function curve of ~D to Y-axis (see Fig. 1) as the

signed distance of ~D to ~0, which is described as follows: By

the a-cut method, for each a2[0,1], considering the a-cut

of ~D, we have a-level set ½ ~DLðaÞ; ~DUðaÞ� and from Fig. 1, we

can obtain the end points of line segment �PQ, Pð ~DLðaÞ;aÞ

and Qð ~DUðaÞ;aÞ, which are on the membership function

curve of ~D. The X-coordinates of the end points (P and Q)

are ~DLðaÞ and ~DUðaÞ, which are corresponding to the end

points of a-level set ½ ~DLðaÞ; ~DUðaÞ�. For each l2(0,1), the

weighted average of ~DLðaÞ and ~DUðaÞ denoted by l ~DLðaÞC
ð1KlÞ ~DUðaÞ is the inner point of a-level set

½ ~DLðaÞ; ~DUðaÞ�, and Rðl ~DLðaÞC ð1KlÞ ~DUðaÞ;aÞ is the

inner point of line segment �PQ (see Fig. 1), hence the l-

signed distance from interval ½ ~DLðaÞ; ~DUðaÞ� to origin 0 is

defined as the signed distance from inner point l ~DLðaÞC
ð1KlÞ ~DUðaÞ to origin 0. By Yao and Wu’s (2000)

definition, we can obtain d0ð½ ~DLðaÞ; ~DUðaÞ�; 0; lÞZ
l ~DLðaÞC ð1KlÞ ~DUðaÞ. Hence, for each a2[0,1], we

have the following one-to-one mapping relations:

½ ~DLðaÞ; ~DUðaÞ;a�4 ½ ~DLðaÞ; ~DUðaÞ�4 �PQ and ~040.

Thus, the l-signed distance from ½ ~DLðaÞ; ~DUðaÞ;a� to ~0
can be defined as dð½ ~DLðaÞ; ~DUðaÞ;a�; ~0; lÞZd0ð½ ~DLðaÞ;
~DUðaÞ�; 0; lÞZl ~DLðaÞC ð1KlÞ ~DUðaÞ:( )

The Eq. ( ) is denoted as the signed distance from

inner point Rðl ~DLðaÞC ð1KlÞ ~DUðaÞ;aÞ of �PQ to Y-axis

(see Fig. 1). Because ~D2Fs, Eq. ( ) represents a

continuous function with respect to a, where 0%a%1. In

addition, since a only varies during the interval [0,1], the l-

signed distance from fuzzy set ~D to ~0 can be found by

calculating the mean value of signed distance from the inner

point ðRðl ~DLðaÞC ð1KlÞ ~DUðaÞ;aÞÞ of �PQ to Y-axis.

Therefore, by Definition 2.4, we have

dð ~D; ~0; lÞ Z

ð1

0
½l ~DLðaÞC ð1 KlÞ ~DUðaÞ�da:

Such a function can be regarded as the l-signed distance

from fuzzy set ~D to fuzzy point ~0. From Remark 2.12, for

each l2(0,1), dð ~a; ~0; lÞZaZd0ða; 0; lÞ for all a2<, and

family of all fuzzy points 3Fs, thus the l-signed distance

(d) on Fs is one extension of the l-signed distance (d0) on <.

In addition, by Properties 2.7, 2.8 and Remark 2.12, for

l2(0,1), fuzzy system ðFs; d;3;zÞ is also one extension of

a real system ð<; d0;!;ZÞ.
6.3. The results of using the l-signed distance method to

defuzzify ~D0 (in (4.3)), ~gj (in (4.4)), ~k (in (4.5), and ~Pn

(in (4.6)) with different l levels

When l!0.5, l!0.5!(1Kl), by Fig. 1, for each

a2[0,1], the point l ~DLðaÞC ð1KlÞ ~DUðaÞ in ½ ~DLðaÞ; ~DUð

aÞ� will be closer to the right-end point ~DUðaÞ. In addition,

because 0! ~DLðaÞ! ~DUðaÞ for all a2[0,1], we have

l ~DLðaÞC ð1 KlÞ ~DUðaÞ

Z ~DUðaÞKlð ~DUðaÞK ~DLðaÞÞO ~DUðaÞ

K0:5ð ~DUðaÞK ~DLðaÞÞ

Z 0:5 ~DLðaÞC0:5 ~DUðaÞ

for all a2[0,1]. Accordingly,

D	
l Z dð ~D; ~0; lÞ

Z

ð1

0
½l ~DLðaÞC ð1 KlÞ ~DUðaÞ�da

O

ð1

0
½0:5 ~DLðaÞC0:5 ~DUðaÞ�da

Z dð ~D; ~0; 0:5Þ Z D	
0:5:

Contrarily, when lO0.5, for each a2[0,1],

l ~DLðaÞC ð1 KlÞ ~DUðaÞ!0:5 ~DLðaÞC0:5 ~DUðaÞ;

and then D	
l !D	

0:5. Based on the above derivations, we can

obtain the same relations corresponding to ~D0, ~gj, ~k, and ~Pn

as follows.

When l!0.5, then D	
0l OD	

0:5, g	
jlOg	

j0:5, k	l Ok	0:5, and
~Pnl O ~Pn0:5; when lO0.5, then D	

0l !D	
0:5, g	

jl !g	
j0:5,

k	l !k	0:5, and ~Pnl ! ~Pn0:5.

The above-mentioned relations may refer to the numeri-

cal results in Tables 1–3.

Therefore, in our FDCF model, it implies that the use of l

level can be regarded as a simple concept describing the

investor’s attitude to risk. That is, if l!0.5, then we may

denote that such an investor is an optimist when estimating

the values of fuzzy numbers such as fuzzy cash flow ð ~D0Þ,

fuzzy growth rate ð ~gjÞ, fuzzy discount rate ð ~kÞ, and fuzzy

future selling price ð ~PnÞ; if lO0.5, then such an investor is a

pessimist when estimating them. Also, if lZ0.5, then such

an investor is a neutral to risk.
7. Concluding remarks

Valuation analysis is quite import to obtain a ‘fair value’

for an asset but also to take into account the investor’s risk

aversion. In this paper, we have proposed a more practical

tool to deal with uncertainty and risk for a valuation model.

This study extended the classical DCF model by developing

a fuzzy logic system that it takes vague cash flow, growth
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rate, and discount rate into account in order to explicitly

discuss the more realistic valuation model. In such a FDCF

model, the uncertain information will be fuzzified as

triangular fuzzy numbers so that it would be useful for

typical investors to analyze the intrinsic value of a specific

asset. We also find that the FDCF model is one extension of

the classical (crisp) DCF model.

Furthermore, the success of this model is demonstrated

through numerical examples that a novel fuzzy philosophy

achieves a more reasonable operation on valuation, and it

reveals some properties leading to a good method of helping

the typical investors to master their assets’ values.
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