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Abstract

Pairwise-nearest-neighbor (PNN) is an effective clustering method, which can always
generate good clustering results than others. Since the computational complexity of the PNN
method is high, it is seldom applied to solve clustering problems. To improve this problem,
many fast exact PNN methods were proposed. The performance of most existing fast PNN
methods are unstable and highly influenced by the cluster separation degree of a data set. To
solve this problem, this project proposed an adaptive fast PNN method. In our proposed method,
clusters from the data set are first separated into clusters of gorups and then the distance
information between every pairs of groups and between a cluster and all groups are recorded.
Finally, the distance information is used to filter out impossible gorups and clusters in the
nearest neighbor finding process of a cluster to increase the efficiency of the PNN method.
Experimental result shows that our proposed method can have better performance than existing
method under different cluster separation degrees.

Keywords: Pairwise-Nearest-Neighbor, Fast Algorithm, Adaptive Algorithm
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Images FPNN MFPNN Flj&a‘;;/]% MFPNN + 77 & #2
Aurplane 764.09 4.26 3.21 2.90
Baboon 29.17 7.66 9.03 8.28
Beach 28.05 3.48 4.60 4.06
Bird 29.97 3.04 3.90 3.53
Boatl 31.17 4.13 4.82 4.59
Boat2 28.28 4.42 5.45 5.04
Coast 28.35 4.18 4.96 4.85
Door 30.08 8.27 10.39 8.96
Effigy 27.63 3.51 4.56 4.10
F16 27.39 3.45 4.71 4.04
Flower 25.82 2.92 3.68 3.53
Girl 33.67 3.32 4.51 3.92
Hats 27.14 2.89 4.10 3.53
Houses 26.54 4.81 5.15 5.41
Island 27.18 3.37 4.32 3.98
Lake 27.69 4.09 5.32 4.70
Lena 27.57 3.14 4.23 3.76
Light House 27.10 3.21 3.99 3.82
Milk 27.22 3.23 4.65 3.93
Parrot 28.08 2.79 3.84 3.39
Peppers 28.61 3.28 4.59 3.90
Race 27.25 5.51 6.23 6.15
Raft 28.86 4.52 5.87 5.13
Red House 28.78 4.24 5.48 4.96
River 29.25 6.88 8.72 7.50
Sail Boatl 28.03 3.35 4.35 3.96
Sail Boat2 27.66 3.28 4.32 3.93
Spaceman 1213.73 219.40 1.64 1.56
Tiffany 29.09 4.23 6.04 4.91
Wall 28.64 6.79 7.46 7.46
Womanl 28.91 3.93 5.48 4.62
Woman?2 28.53 5.59 6.68 6.27
Average 88.42 10.97 5.20 4.71
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Computer Graphics, Imaging and Visualisation

DOCTORAL RESARCH WORKSHOP

Organised by
Visualisation & Graphics Research Unit of LSBU, UK
&
Department of Computer Systems, Faculty of Information Technology, University of Technology, Sydney, Australia

Computer Graphics, Imaging and Visualization —CGIV- Forum is an annual forum that is held for 7 year running. This year CGIV
forum in collaboration with the Visualisation & Graphics Research Unit of LSBU, UK and the Department of Computer Systems ,
Faculty of Information Technology, University of Technology, Sydney, Australia are pleased to announce Doctoral Research
Workshop within the scope of the 7th International conference on Computer Graphics, Imaging and Visualization (CGIV2010).
This workshop provides an opportunity for PhD students to present their work, receive feedback and to meet other researchers
working in CGIV area. The focus of this workshop will be on the pros and cons of various Computer Graphics, Imaging and
Visualization ideas and solutions and its potential impact on both the research community and the industry in general.

All doctoral students involved in Computer Graphics, Imaging and Visualization research area are welcome to attend. The event
is organised in four sessions with up to four PhD students per session. Presenters, which are PhD students at various stages of
their PhD, will give an outline of their PhD research in order to benefit from feedback about their work and methodology from a
combined industry & research panel.
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Abstract

The concept of motion history image (MHI) is widely
adopted by many researchers to solve problems of video
objects behavior recognition. In the case of predefined
behaviors with various durations, the computation time
of behavior recognition will increase intensely. In this
paper, a fast MHI approach is proposed to reduce the
computation time of the MHI approach by storing
multiple sets of features for a predefined behavior and
using the partial distance computation method. In this
paper, 9 local orientations proposed by Cheng et al and
squared Euclidean distance are used in our behavior
matching process to demonstrate the performance of the
proposed approach. Experimental results show that the
proposed method can effectively reduce the computation
time of the MHI method.

Keywords--- Video object behavior recognition.

1. Introduction

A surveillance system is used to obtain a series of

images (frames) from real world by using a video camera.

The captured images can be recorded or transferred to a
remote monitor for displaying. Through watching the
captured images, one can realize what is happened in
front of the camera without limitations of time and
location. The surveillance system can be set up for
various purposes, such as the traffic monitoring, living
environment monitoring, and remote monitoring.

To identify if a specified behaviour occurs in a video
stream usually requires a lot of time and human efforts
and is very easy to make mistakes. To solve these
problems, many approaches were proposed [1-3] to
identify behaviors from video streams automatically. A
classical behavior recognition method includes two
phases: the training phase and the testing phase. In the
training phase, video clips of predefined behaviors
performed by a video object are captured. For a
predefined behavior, a set of features is obtained from
the video clip of the behavior. In the end of the training
phase, a batch of feature sets from predefined behaviors
is used to create the knowledge base of behavior
recognition. In the testing phase, a set of features is first
extracted from the input frames which are usually
captured in real time and from the surveillance system.
Then, the extracted feature set is used in the behavior

matching process to identify if a predefined behavior
detected.

There are many methods [1-3] were proposed to
obtain a set of features from a set of motion frames.
Among available methods, the motion history image
(MHI) approach [4] usually takes less computation time
and requires less prior knowledge. The simplicity of the
MHI method has attracted many attentions in recent
years. To improve the availability and precision of the
MHI method, many methods [5-9] were proposed. In
Cheng’s method [9], the motion gradient magnitude
histogram (MGMH) and local orientations are proposed
and used as features of an MHI. Through using these two
kinds of features, the accuracy of behavior recognition
can be effectively improved.

The motion history image of a behavior is generated
using frames captured during the action time of the
behavior. For a set of predefined behaviors with different
durations of time, to detect if input frames present a
predefined behavior, multiple MHIs and multiple
features must be generated before the behavior matching
process. This will largely increase the computation time
of MHI-based methods. To reduce the computational
complexity of the MHI-based method, a novel fast MHI
approach is proposed in this paper. The proposed
approach adopts 9 local orientations as features for it can
demonstrate the performance of the proposed method
more clearly. However, other feature extraction methods
can also be used with our proposed method.

The rest of this paper is organized as follows. In
section 2, the MHI generation process and nine
orientations extraction method are reviewed. Our
proposed method is presented and described in section 3.
Experimental result and conclusions are given in section
4 and section 5, respectively.

2. Background

Motion history image (MHI) approach was first
presented by Davis and Bobick [4] which uses temporal
templates to represent and recognize human actions.
Figure 1 shows a typical procedure for behavior
recognition using the MHI method. From figure 1, we
can see that the training phase consists of object
extraction, history matrix updating, MHI generation, and
feature extraction process and the testing phase contains
object extraction, history matrix updating, MHI
generation, feature extraction, and behavior matching



processes. The detail explanation for each process is
provided in the following subsections.

Training Phase

Ob]ect extraction ‘

Testing Phase

Object extraction ‘

History Matrix Updating

l History Matrix Updating ‘
‘ MHI Generation ‘ ‘ MHI Generation ‘

Feature extraction ‘

l

,_,H—~{ Behavior Matching ‘

Feature extraction ‘

Behavior
Database

Figure 1. Procedure of a typical MHI approach.

2.1 Object extraction process

This process is used to find where the moving object
is located in the input frame and to generate an object
mask for the input frame. There are many methods [10]
developed and can be used to deal with this problem.
After this process, we can have an object mask for the
input frame. An object mask is a binary image. For a
pixel in the input frame is an object pixel, its
corresponding pixel in the object mask of the input frame
is set as 1. Otherwise, it is set as 0. Figure 2 gives an
example for the input frame, reference frame, and object
mask of the input frame.

(b) (©
Figure 2: An example for (a) reference frame, (b)
input frame, and (c) object mask.

2.2 History matrix updating process

The purpose of the history matrix updating process
is to record the appearance history for video objects. To
accomplish this goal, a history matrix with the same size
as input frames is maintained. Each element in the
history matrix is initialized to 0 and updated according to
the values of the incoming object masks using a
timestamp with an initial value of 1.

Let the current value of timestamp be 7 and the value
for an element in the object mask with coordinate (x, y)
at time-point 7 be M'(x, y). The updating method for an
element in the history matrix with coordinate (x, y) at
time-point 7 is defined in the following:

. T ifM(x,y)=1
H(x,y) =
(x.7) {0 if M*(x,y)=0and H"'(x,y) < (- 5) M

where J is the number of frames in a motion.

Figure 3 gives an example to show how the history
matrix is updated under a series of incoming object
masks when 0=3.
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Figure 3. An example to show the updating
process of the history matrix.

2.3 MHI generation process

Once the value of 7 is equal to or greater than J, that
means we have enough frames for motion recognition
and an MHI can be generated using the following
equation:

%szss if H(x,y) %0

MHI" (x,y) =
0 if H(x,y)=0 (2)

where MHI'(x, y) is the value of a pixel in the MHI at
time-point ¢ with coordinate (x, y). Figure 4 gives an
example to show how an MHI is generated for J=8,
where the surrounding black area is removed.

Figure 4. An example for (a) input frames, (b)
object masks, and (c) the MHI.

(c)



2.4. Features extraction process

In Cheng’s method [9], the local orientations of an
MHI is obtained by dividing the MHI into 9 blocks as
shown in figure 5(a) and calculating the motion
orientation for each block. The covering range of each
block is given in figure 5 (b). It is noted that the fifth
block contains the whole MHI and is also called the
global orientation of the MHI.
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(a) (b)
Figure 5. MHI local areas

To evaluate the orientation information for an MHI,
three blank 2-D arrays G:, G;, 0" are used to record the

horizontal gradients, vertical gradients, and angles for
pixels in the MHI at time-point z, respectively. Here, two
sobel masks S, and S, as given below are applied to
evaluate the horizontal and vertical gradients,
respectively.

10 -1 1 2 1
5.=|2 o -z 5.=|o0 o0 o0 (3)
1 0 -1 -1 -2 -1

Once G? and G, are evaluated, the angle of a pixel
with coordinate (x, y) in the MHI can be computed using
the following equation:

G (x,y)

07 (x, y) = tan' (==
G (x,y)

“)

Let O; be the major orientation of nth block for an

MHI. The definition of o; is listed as follows:

T—H"(x,
norm(t, 8, H " (x, y))=1_% ©)
o g4 L DL (5.6, nom(E 5, H (5 ) (6)
P
n = Tnrer ZU norm(t, 0, H" (x, y))

where H(x, y) is the value of a pixel in the history matrix
with coordinate (x, y), 6 (x,y) is the angle of a pixel in

nth block with coordinate (x, y), enfmf is the maximum

angle in nth block, and angDiff is a function to evaluate
the angle difference between or . ; and O (x,y)-

2.5. Behavior matching process

There are many different matching methods [5, 15]
available. In this paper, the squared Euclidean distance is
used to find the most similar predefined behavior from
the behavior database for input frames. If the difference
between the extracted feature set of the input frames and

the most similar feature set from the behavior database is
less than a given threshold value, we can say the
behavior corresponding to the most similar feature set
appears in the input frames. Otherwise, the behavior is
not detected.

3. Proposed Method

For a behavior database contains a set of predefined
behaviors with various numbers of motion frames, to
recognize the behavior of input frames, we must generate
several MHIs of various Js. Let the behavior database
consists of a delta set A= {J;, d5, 93 ... , or}. To
recognize whether the monitored screen contains a
predefined behavior or not, we need to generate . MHIs
using different Js. That is, for every input frame, we
have to execute the Object Extraction and History Matrix
Updating processes once and the MHI generation and
Features Extraction processes L times. To reduce the
computational complexity, two techniques are proposed
and described in the following subsections.

3.1. Storing multiple sets of features for a
predefined behavior

To decrease the execution time of the MHI
generation and Features Extraction processes, we choose
to store multiple sets of features for a predefined
behavior. For a predefined behavior with the smallest
delta, say J;, only one set of features is stored and for a
behavior with larger delta, say o;, 2 < i < L, i sets of
features must be stored in the behavior database. To meet
this requirement, the design of the behavior database is
given in the following table.

Table I: The design of behavior database

Delta] 0y 0, oL
Features | LF | Features | LF Features | LF
IBehavio:
B F T
B F | F| Fp2 |T
By F F | F F || Fp» T

From table I, we can see that there are multiple
behaviors defined in the behavior database and all
behaviors are sorted according to their ds. For a behavior
with smaller J, fewer sets of features are stored.
Otherwise, more sets of features must be recorded.
Where LF means the last flag and is used to recognize if
this is the original J of a behavior. In case of a ¢ is not
the original 0 of a behavior, the LF for the ¢ is set as ‘F’.
Otherwise, it is set as ‘T’. Here, FGB' forl1<i<Land|1

<j < M is the feature set for behavior B; and 6 = J;. In our
approach, only the local information of MHI is used.
That is, we use 9 block orientations O,, 1 < n <9 for an
MHI as features.



Let F! be the feature set extracted from the input

frames at time-point 7 with 6 = J;. The procedure of
behavior recognition using multiple sets of features is

described in figure 6. Where D( F;, FGB/) is the squared

Euclidean distance function and THR is a threshold value
which should be determined experimentally.

Set dist[j]1=0, for 1 <j<M
Set donelj] =false, for 1 <j <M
For i=1toL {
Generate MHI; and Fy
For j=1toM {
If ( donelj] = false ) {
disiljl = D(F} , F,")
If ( (dist[j] > THR) or (LF, = true))

donelj] = true

}
}
Set id=1
Fori=2toM

If ( distli] < dist[id] ) id = i
If (dist[id] > THR ) id =0
Return id
Figure 6: Behavior recognition algorithm using
multiple sets of features.

As shown in figure 6, the procedure will find the id
of behavior which has the less distance to features
extracted from input frames. If no behavior is recognized,
the value of id will be 0.

3.2 Partial distance calculation

For two sets of features F® and F* , the definition
of distance D( F® , F*) is given below.

D(F" F™)=3" (0/-0")’ )

Before using the above distance equation, all
features of the input MHI must be determined first. In
many cases, we don’t have to fully compute the distance
to know if a predefined behavior is not the behavior of
the input frames. According to this observation, a partial
distance calculation method is proposed. The partial
distance calculation method is to divide distance
calculation process into 9 steps. Let D'( F , F®) be the
ith partial distance for feature sets F® and F* . The
definition of D'(F®, F*) is given below.

D'(F», F*)=(0 -0y (8)

From equation (8), we can see that the D(F®, F*)
can be computed using the following equation.

D(F", F")=%" D'(F" F™) ©)

By dividing the distance computation into 9 steps,
we can check the accumulated distance after each partial
distance is computed to see whether current accumulated
distance is already excess THR or not. If accumulated
distances are all excess THR for all predefined behaviors,
the distance computation process can be terminated
earlier. To further reduce the computational complexity,
the feature set for the input frames should not be
evaluated at a time. That is, a feature of the input frames
is evaluated only when it is needed. In such a case, if the
feature set of the input frames is quite different from
those stored in the behavior database, a lot of
computations can be avoided. Figure 7 gives the
procedure of using the partial distance calculation
method. Where the order[] is an array to record the
computation order for each feature and is defined as
{1,2,3,4,6,7,8,9,5}. It is noted that the fifth block must be
compared in the last, since the fifth block covers the
whole range of the MHI of the input frames.

Set dist[j] =0, for 1 <j<M
Set donelj] = false, for 1 <j<M
For i=1to L{
Generate MH];
For block=1109 {
Extract the Oy, from MHI;

Set terminate=true
For j=1toM {
If (donelj] = false) {

dist[j] += DYl (F;, FJB’ )
If (dist[j]1> THR) or ( LFJBr = true) {

donelj] = true
} else terminate=false

1
1
If (terminate=true) {
id=0
Return id
}
}
}
Set id=1
Fori=2toM

If (dist[i] < dist[id] ) id = i
If (dist[id] > THR ) id=0
Return id

Figure 7: Behavior recognition algorithm using
partial distance calculation and multiple sets of
features.

4. Experimental Results

To evaluate the performance of the proposed fast
MHI method, in the training phase, four behaviors (sit,
stand, fall, and hunker) were acted by two persons and
captured by a camera from four directions (front, back,
left, and right). That is, eight video clips were captured



for each behavior. The size of captured frames is
704x480 pixels. In this experiment, there are two
different & are used. The &5 assigned to sit, stand, fall,

and hunker behaviors are 12, 16, 12, and 12, respectively.

That is, there are 40 sets of features are stored in the
behavior database. For each of sit, fall, and hunker
behaviors, only one set of features is stored, while for a
stand behavior, two sets of features (for 6= 12 and 16)
must be recorded in the behavior database.

In the testing phase, 146 consecutive frames contain
four predefined behaviors and some undefined behaviors
with the size of 704x480 pixels are tested under three
conditions. The first condition (referred to as Case 1) is
performed without using the proposed improving
techniques. The second condition (referred to as Case 2)
is performed with using the algorithm as listed in figure
6. The final condition (referred to as Case 3) uses all
methods presented in section 3. In all conditions, the
threshold THR is set as 49 to achieve better recognition
result. All programs were implemented using Microsoft
Visual C++ 2008 Express and executed under a PC with
CPU of AMD Phenom 9550 Quad-Core 2.20 GHz and
memory of 2 GB.

In the recognition process, we define that a behavior
is recognized only if the behavior is detected for three
continuous times. To reduce more computation time, the
recognition process will be paused for a period of J,/2
frames, where the J; is the smallest ¢ in the behavior
database. Table II lists the behavior recognition results
under three cases. From table II, we can find that all
methods generate the same recognition results.

Table Il: Behavior recognition results under
three cases.

Behavior Occ?urence Times for behaviors are recognized
times Case 1 Case 2 Case 3
Sit 1 1 1 1
Stand 4 3 3 3
Hunker 1 0 0 0
Fall 2 1 1 1
Others 4 0 0 0

Table III gives the computation time of behavior
recognition under three conditions.

Table Ill: Execution time (in milliseconds) for
Cheng’s method and our proposed method.

Average computation time per frame

Case 1 64 ms
Case 2 42 ms
Case 3 28 ms

From table III, it is obviously to see that both
techniques of storing multiple sets of features for a
predefined behavior and the partial distance calculation
can effectively reduce the computation time of behavior
recognition. Comparing to Case 1, which uses no
improving method, the proposed method can reduce
about 56% of computation time.

5. Conclusions

In this paper, a new fast MHI approach is proposed to
reduce the time complexity of MHI method by storing
multiple sets of features for a predefined behavior to
decrease the MHI generation time and using the partial
distance calculation technique to reduce the distance
calculation time. Experimental result show that the
proposed method can effectively improve the
computation time of the MHI method. However, this
paper shows only a preliminary result for the proposed
method. In the future, more experiments should be done
to show how the proposed method will be influenced by
the number of & and predefined behaviors.
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