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Abstract

The problem of k-nearest neighbors (kNN) search is to find nearest k£ neighbors from a given
data set for a query point. The finding process of kNN is very time comsuming. To speed up the
finding process of nearest k neighbors, many fast kNN search algorithms were proposed. The
performance of fast kNN search algorithms is highly influenced by the number of dimensions,
number of data points, and data distribution of a data set. In the extreme case, the performance of
a fast kNN search algorithm may be poorer than the full search algorithm. To overcome this
problem, five fast algorithms were tested using multiple real data sets. Experimental results show
that the proposed methods have better performance than others under various numbers of
dimensions, various numbers of data points, and different types of data sets in most cases. The
result of the project will be very useful in choosing a fast kNN search algorithm for an unknown
data set.

Keywords: Fast kNN Search Algorithm, Orthogonal Search Tree, Performance Evaluation.
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EVALUATION OF FAST K-NEAREST NEIGHBORS
SEARCH METHODS USING REAL DATA SETS

Yi-Ching Liaw
Computer Science and Information Engineering, Nanhua University, Chiayi, Taiwan

Abstract - The problem of k-nearest neighbors (kNN) search
is to find nearest k neighbors from a given data set for a query
point. To speed up the finding process of nearest k neighbors,
many fast kNN search algorithms were proposed. The
performance of fast kNN search algorithms is highly
influenced by the number of dimensions, number of data
points, and data distribution of a data set. In the extreme case,
the performance of a fast kNN search algorithm may be
poorer than the full search algorithm. To help understand the
performance of fast kNN search algorithms on data sets of
different types, five fast algorithms were tested in this paper
using multiple real data sets. The experimental results of the
paper will be very useful in choosing a fast kNN search
algorithm for an unknown data set.

kNN

Keywords: Fast

evaluation.

search algorithm, performance

1 Introduction

The problem of k-nearest neighbors (kNN) search is to
find nearest k neighbors for a query point from a given data
set. This problem occurs in many types of applications [1-3].

The intuitive method of finding nearest k neighbors for a
query point Q from a data set S={X;, X3, ..., X,} of n data
points is to compute n distances between the query point Q
and all data points in the data set S. This method is called the
full search algorithm (FSA). Generally, the squared Euclidean
distance is applied to measure the distance between two points,
for a query point Q=[q;, ¢, ..., ¢4’ with dimension d and a
data point X=[x;;, x;2, ..., x.2)" from data set S, the distance
between these two points is defined as below :

d(X,, Q) =3 (x;=q,)’ M

The full search algorithm is easy to be implemented, but
always takes a lot of computation time. To reduce the
computation time of the kNN finding process, many fast kNN
search algorithms were proposed [4-8]. Among available fast
kNN search methods, algorithms proposed by McNames [4],
Lai et al. [5], Chen et al. [6], and Liaw et al. [7][8] usually
have better performance than others. In this paper, we refer to

algorithms presented in [4], [5], [6], [7], and [8] as PAT, LAI,
LBT, MPAT, and OST, respectively.

The performance of fast kNN search algorithms is highly
influenced by the number of data dimensions, the number of
data points, and the type of data distribution. For data sets of
different types, different search algorithms should be chosen
to achieve the best performance. For the case of a wrong fast
algorithm is chosen for a data set, the performance of finding
nearest k neighbors may be poor. In the extreme case, the
performance of a fast kNN search algorithm may poorer than
the FSA.

To help finding the best kNN search algorithm for an
unknown data set, this paper evaluates the performance of
several new and high performance fast kNN search algorithms
[4-8] using real data sets of various dimensions, various
numbers of data points, and various types of applications.

The rest of this paper is organized as follows. In section
IL, five fast kNN search algorithms [4-8] are briefly reviewed.
The real data sets selected in this paper are described in
section III. Experimental results and conclusions are given in
section IV and section V, respectively.

2 Fast kNN Search Algorithms
2.1 The PAT Algorithm

The PAT algorithm [4] consists of two phases : the
principal axis search tree construction phase and the nearest
neighbors finding phase.

The principal axis search tree construction phase builts a
principal axis search tree for a data set. In the beginning, there
is only one node (the root node) is created for the tree and all
data points in the data set are assigned to the root node. Next,
data points in the root node are partitioned into n,. child nodes.
The partition process of a node is started by evaluating the
principal axis of data points in the node and followed by
partitioning data points in the node into n. child nodes
according to projection values of data points onto the
principal axis. The partition process is repeatedly applied to
each child node until the number of data points in a node is
less than n.. After the principal axis search tree is built, every



internal node in the tree maintains n,. child nodes and a
principal axis while a leaf node records a list of data points.

To find nearest k neighbors from a principal axis search
tree for a query point, projection values of the query point
onto principal axes of tree nodes are used as features to filter
out impossible tree nodes by traversing the tree in depth-first
search order and using a node elimination criterion.

During the tree nodes filtering process, boundary points
and projection values of the query point onto principal axes of
nodes must be evaluated. For a large data set or a search tree
with high depth, the computation time for evaluating such
information may be large.

2.2 The LAI Algorithm

This algorithm [5] uses projection values of a point onto
three vectors (mean, horizontal, and vertical vectors) as
features and four inequalities to reject impossible data points
in the nearest neighbors finding process of a query point.
Before this algorithm can be applied, projection values of data
points should be evaluated and all data points are arranged in
asscending order according to mean values of data points.

To find nearest neighbors from sorted data points for a
query point, projection values of the query point onto three
vectors are first evaluated and the searching order of data
points is from the data point with the closest mean value to the
query point to the one with the farthest mean value to the
query point. During the searching process, four inequalities
are used in sequence to filter out unlikely data points based on
their projection values.

2.3  The LBT Algorithm

The LBT algorithm [6] uses a multilevel lower-bound
tree and a winner update search method to speed up the
nearest neighbors finding process.

To build the multilevel lower-bound tree for a data set,
data points in the data set are first transformed using an
orthonormal basis of d orthogonal vectors, where d is the
number of dimensions for the data set. Then, data points in the
data set are partitioned into clusters according to their
projection values onto the first orthogonal vector and a given
radius using an agglomerative clustering technique. Each
cluster is then further partitioned into clusters according to
their projection values onto the second orthogonal vector.
This process will be repeated L= log(d) | times and generates
a tree of L+1 levels. After the above tree is built, a multilevel
lower-bound tree can be generated according to radiuses and
centroids of nodes.

To find nearest neighbors for a query point using the
LBT method, the projection values of the query point onto
orthogonal vectors must be evaluated first and the finding

process of the query point is performed by traversing the
multilevel lower-bound tree in breadth-first search order and
using a node elimination criterion to filter out impossible
nodes.

24  The MPAT Algorithm

The kNN finding process for a query point using the
PAT method is to reject impossible nodes from a principal
axis search tree using a node elimination criterion. Once a leaf
node cannot be rejected, distances between the query point
and all data points in the leaf node must be computed.

To speed up the leaf node search process, the MPAT
algorithm [7] stores projection values of all data points in leaf
nodes, categorized leaf nodes into three types, and proposed a
new leaf node search algorithm. For a leaf node in the tree
cannot be rejected by the node elimination criterion, data
points in the leaf node are further checked using their pre-
stored projection values, type information of the leaf node,
and a data point rejection inequality to reject more impossible
data points.

2.5  The OST Algorithm

To find nearest neighbors from a principal axis search
tree using the PAT and MPAT method, many projection
values and boundary points must be evaluated for a query
point. Numbers of projection values and boundary points to
be evaluated for a query point are in proportion to the number
of unrejected internal nodes. For a large tree, to evaluate
projection values and boundary points for a query point may
take much computation time.

To overcome this problem, the OST method creates an
orthogonal search tree for a data set using an orthonormal
basis evaluated from the data set and a similar search tree
construction process as that presented in the PAT method. In
the OST method, an orthogonal vector is chosen from the
orthonormal basis for a node to partition data points of a node
into child nodes. The orthogonal vector selected by a node
must perpendicular to those orthogonal vectors chosen by
ancestors of the node. That is, the level of an orthogonal
search tree must less or equal to the number of dimemsions.

To find nearest neighbors for a query point using the
OST method, projection values of the query point onto
orthogonal vectors and a node elimination inequality are used
to reject impossible nodes. For a node, which cannot be
rejected by the node elimination inequality, a point
elimination inequality is also applied to reject impossible data
points.

Comparing to the PAT and MPAT algorithms, the OST
algorithm requires no boundary points and only little
computation time on evaluating projection values in the
nearest neighbors finding process.



3 Real Data Sets

To evaluate the performance of fast kNN search
algorithms, two sorts of real data sets were selected and
described in the following sections.

3.1 Data Sets From Real Images

In this paper, 8 real images with size of 512 x 512 pixels
from USC-SIPI Image Database [9] (see Table I) were
selected to generate 9 data sets and 10000 query points.

Table I : Images from USC-SIPI Image Database

Y > |

Tiffany

Each data set is a codebook generated using the LBG
[10] algorithm and all non-overlapping 4x4 image blocks
obtained from 8 images. Here, 9 data sets were generated.
Five of them are with 16 dimensions and various numbers of
data points (1024, 2048, 4096, 8192, and 16384) and the
others are with various dimensions (4, 64, 256, 1024) and
1024 data points.

Each query point is a non-overlapping 4x4 image block
randomly selected from 8 images.

3.2 Data Sets From UC Irvine Machine
Learning Repository

UC Irvine machine learning repository [11] provides
many useful real data sets. In this paper, 10 real data sets with
numeric data and various numbers of dimensions as listed in
Table II were selected in the paper. For each data set, 10000
query points were generated by randomly selecting data points
from the data set.

In convinience, data sets listed in Table II are referred to
as "Iris", "DL_Sensor", "Abalone", "Magic", "Letter",
"lonosphere”, "Statlog", "Waveform", "Optical", and
"SECOM", respectively.

Table II : Data Sets from UC Irvine machine learning

repository
Name Dimensions | Data Points

Iris 4 150
Dodgers Loop Sensor 6 50400
Abalone 8 41717
MAGIC Gamma Telescope 10 19020
Letter Recognition 16 20000
Ionosphere 34 351
Statlog (Landsat Satellite) 36 6435
Waveform Database Generator 40 5000
Optical Recognition 64 5620
SECOM 590 1567

4 Experimental Results

To evaluate the performance of fast kNN search
algorithms, data sets and query points obtained in section 3
were used for testing the performance of six kNN search
algorithms (FSA, PAT, LAIL, LBT, MPAT, and OST).

In the experiment, all search trees were constructed with
n.=20 for the PAT, MPAT, and OST algorithms. For the LBT
algorithm, source code downloaded from the author's web site
[12] is used. All programs were implemented using Microsoft
Visual C++ 2008 Express under Windows Vista Home
Premium. All programs were executed on a personal
computer with Intel Core 2 Due P8600 2.4G Hz and memory
of 4 GB.

4.1 Experiment Using Data Sets From Real
Images

Tables III and IV list the preprocessing time (in
milliseconds) for five fast kNN search algorithms. From
Tables III and IV, we can see that the LBT and OST
algorithms take the most preprocessing time in different cases.
When a data set with a large number of data points, the LBT
algorithm will take a lot of preprocessing time while for a data
set with a large number of dimensions, the OST algorithm has
the most preprocessing time.

Table III : Preprocessing time for five kNN search algorithms
were applied on data sets with 16 dimensions and various
numbers of data points.

Numberof |\ | [ A1 | LBT |MPAT | OST
Data Points
1024 16 0 39 16 31
2048 16 0 164 16 78
4096 39 8| 1,014 47 164
8192 117 47| 6,755 133 375
16384 312 179] 59,826 343 905




Table IV : Preprocessing time for five kNN search algorithms
were applied on data sets with 1024 data points and various
numbers of dimensions.

Numberof |\ 'p\ 0 | [ A1 | LBT |MPAT | OST
Dimensions
4 0 0 24 0 8
16 16 0 39 16 3]
64 16 0 39 32| 718
256 78 0 55 109] 15,140
1024 289 15| 4431 437390,461

Table V gives the total search time (in milliseconds) to
find nearest 3 neighbors for 10000 query points from data sets
of various numbers of data points using six kNN search
algorithms. From Table V, we can find that the LATI algorithm
is the best algorithm when the number of data points is small.
For a large number of data points, the OST method becomes
the best one.

Table V : Total search time for finding nearest 3 neighbors for
10000 query points from data sets of various numbers of data

points.
Number of | 'pg\ | paT | LAI | LBT |MPAT| OST
Data Points
1024 590 71| 45| 110] 71| 55
20438 1,175] 98| 73| 172] 98] 78
4096 2338 149 119] 281| 147| 120
8192 4738 288 196] 476] 200| 182
16384 | 9311] 372 331 811| 367| 252

Table VI shows the total search time (in milliseconds) to
find nearest 3 neighbors for 10000 query points from data sets
with 1024 data points and various numbers of dimensions.
From Table VI, we can find that the LAI algorithm is the best
algorithm when the number of dimensions is small. For a
large number of dimensions, the LBT method becomes the
best one.

Table VI : Total search time for finding nearest 3 neighbors
for 10000 query points from data sets of various numbers of

dimensions.
Number of | ‘g | paT | LAT | LBT [MPAT| OST
Dimensions
4 174 30 20 47 30 23
16 590 71 45 110 71 55
64 2,430 204 136 265 200 158
256 9,943 846| 568 890| 836| 655
1024 41,355| 3,987 2,757| 2,442| 3,931| 3,076

From this experiment, we can say that the LAI and OST
algorithms are good choices for data sets from real images
and with numbers of dimensions less than 256. For the

number of dimensions greater than 256, the LBT algorithm
becomes the best choice.

4.2 Experiment Using Data Sets From UC
Irvine Machine Learning Repository

Tables VII and VIII enumerate the preprocessing time
(in milliseconds) and total search time (in milliseconds) for
kNN search algorithms were applied on data sets from UC
Irvine machine learning repository. Total search time for a
data set and a kNN search algorithm in Table VIII is the total
computation time to find nearest 3 neighbors for 10000 query
points.

Table VII : Preprocessing time for five fast kNN search
algorithms were applied on data sets from UC Irvine machine
learning repository.

Data Set | PAT | LAI LBT MPAT OST
Iris 0 0 0 0 0
DL_Sensor| 1,872| 1,669/ 1,001,890 1,965 2,106
Abalone 16 16 1,906 31 47
Magic 343 23411,013,609 343 546
Letter 421 265| 159,140 468 1,154
Ionosphere 0 0 15 0 63
Statlog 94 47 3,468 124 1,482
Waveform 78 16 2,109 93 1,950
Optical 140 31 2,110 156 3,682
SECOM 265 16 188 359| 106,314

Table VIII : Total search time for finding nearest 3
neighbors for 10000 query points from different data sets.

Data Set | FSA | PAT | LAI | LBT |[MPAT | OST
Iris 36 14 16 15 13 11
DL_Sensor| 11,572 84 718 390 83 69

Abalone 1,223 37 34 110 33 27
Magic 6,900 220 939 907 217 131
Letter 11,323 772 1,733| 1,250 780 541

Tonosphere 435 173 162 515 168 153

Statlog 8,274 516 518 1,500 499 451
Waveform | 7,281| 2,775| 4,477|17,843| 2,796| 2,746
Optical 13,163 2,427| 5,025|11,156| 2,360| 2,256
SECOM 36,361 2,105| 3,518]16,531| 2,072] 1,752

From table VII, we can find that the LBT and OST algorithms
take more preprocessing time than others. The preprocessing
time of LBT algorithm is very sensitive to the number of data
points. For a data set with a large number of data points, such
as "DL_Sensor", "Magic" and "Letter" data sets, the LBT
algorithm requires a long time to create a lower-bound tree.
The preprocessing time of the OST is highly influenced by the
number of dimensions. For a data set with a large number of
dimensions, it takes a lot of computation time to evaluate the
orthogonal basis for the data set. In table VIII, we can see that



the OST algorithm performs well for all data sets and the
MPAT ranks second.

From this experiment, we can conclude that the OST
algorithm is a good choice for most data sets. However, in the
case of a data set with a huge number of dimensions and the
preprocessing time is important, the MPAT algorithm is a
better choice than the OST algorithm. From [7], we know that
the performance of the MPAT algorithm is highly influenced
by the number of data points in leaf nodes. In the case of the
MPAT algorithm is applied, a suitable n. must be chosen to
ensure that the number of data points in leaf nodes is large to
achieve a good performance.

5 Conclusions

The performance of fast kNN search algorithms is highly
influenced by the number of dimensions, number of data
points, and data distribution of a data set. To help understand
the performance of fast kNN search algorithms on data sets of
different types, five fast kNN search algorithms were tested in
this paper using data sets from real images and UC Irvine
machine learning repository. From the experimental results,
we can find that the OST algorithm performs well for most
cases. For a data set from real images, the LAI algorithm is
also a good choice. If a data set with a huge number of
dimensions and the preprocessing time is important, the
MPAT method becomes the best choice.
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