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稀薄氣流與連續流一體化數值計算法研究 
Unified Computational Methods for Rarefied and Continuum Flow 

  
黃俊誠 

南華大學資訊工程系 
 

Abstract 

On Continuum flow regime, the CFD methods based on the solution of Navier-Stokes equations are 
used to obtain surface pressure, temperature, the flow structure around vehicle, and the coefficients of 
aerodynamic characteristic. For rarefied gas flow regime, which has larger Knudsen number, DSMC 
method has been widely used. However, for the nearly continuum flow regime, the solution of 
Navier-Stokes equation does not obtain accurate results and the DSMC method is difficult to deduce 
reliable results because the numerical results are amenable to statistical fluctuations and the computing 
time is expensive. It is necessary to develop an unified numerical method for simulation of rarefied, 
transition, and continuum flow and used for aerodynamic design of space vehicle, especially in nearly 
continuum flow regime. Therefore, one of the purposes of this project is to develop a numerical solver for 
model Boltzmann equation by integrating descrete ordinate method and CFD method for unified 
simulations of rarefied and continuum gas flows. After serval example testing, we conclude that the 
present proposed method provides an economical and efficient way to obtain accurate numerical solutions 
of the model Boltzmann equations for rarefied gas flows, particularly for flows with low or moderate 
Mach numbers. In the future works, developing an efficient hybrid method, coupling model Boltzmann 
and Navier-Stokes solver, and further improvement on the adaptive grid points in velocity space are 
warranted. The results of this project will contribute to native space project, defense technology, and 
industry. 

 
Keywords: Rarefied gas dynamics, Model Boltzmann equation, Discrete ordinate method, High resolution 
conservative scheme, WENO scheme, Gauss-Hermite quadrature. 

 

1. Introduction 
The rarefied gas flow in transitional regime 

between continuum regime and free-molecule 
regime involved in microelectrical-mechanical 
devices, vacuum systems, and high altitude 
aerodynamics are difficult to treat either 
experimentally or theoretically. The physical 
parameter characterized the rarefied gas flow is 
the Knudsen number which is defined as the ratio 
of the mean free path to the characteristic length. 
The capability to accurately predict the rarefied 
gas flows over the complete spectrum of flow 
regimes is very important and desirable. The 
Navier-Stokes equations are inadequate to study 
rarefied gas flows, the kinetic theory and the 
Boltzmann equation needs to be used. The kinetic 
approach is valid in the whole range of the gas 
rarefaction. This is an important advantage when 
systems with multiscale physics are investigated.  

The most commonly and well known 
numerical method for studying the rarefied gas 
flow is the direct simulation Monte Carlo (DSMC) 
method [1]. Applications of DSMC method to a 
wide variety of rarefied gas flow problems have 

been illustrated. However, for low Mach number 
or nearly continuum flow, it is difficult to deduce 
reliable results because the numerical results are 
amenable to statistical fluctuations. Instead, the 
difficulties in direct solving the Boltzmann 
equation are treating the nonlinear collision term. 
Recently, Kolobov and Aristov proposed the direct 
numerical solution (DNS) of Boltzmann equation 
and a unified solver for rarefied and continuum 
flows [2]. But, it consumes computing time and is 
not suitable for practical usage. Thus, instead of 
solving the full Boltzmann equation, one solves 
the kinetic model Boltzmann equation to develop a 
more economic and efficient way of studying 
rarefied gas flow. 

In the present work, the discrete ordinate 
method was applied to the distribution function to 
replace its continuous dependency on the velocity 
space by a set of distribution functions in physical 
space and time but point functions in velocity 
space. The resulting set of differential equations 
can be cast into hypersonic conservation laws 
form with nonlinear source terms. Here, we 
applied the weighted essentially nonoscillatory 
method[3], which developed for Euler and 
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Navier-Stokes equations, and developed an 
efficient numerical method to solve model 
Boltzmann equation for simulation of rarefied gas 
flow covering the full spectrum of flow regimes. 

The purpose of the three years project is to 
develop an efficient unified flow solver for 
rarefied and continuum flows, which was coupled 
the numerical methods for solving model 
Boltzmann and Navier-Stokes equations. To 
accelerate computation, some new methods will be 
developed including adaptive discrete ordinate 
method, scale factor quadrature, domain switching 
criteria, and parallel computing algorithm etc. All 
the new methods will be calibrated and validated 
with some standard test cases. The new methods 
developed in this project can be applied to the 
aerodynamic design of launch vehicle, sounding 
rocket, and tactical ballistic missile. Beside 
aerodynamic application, the new methods are 
useful for many technological applications, like as 
altitude control nozzle of satellite, vacuum pump, 
chemical vapor deposition in semiconductor 
manufacturing, and micro electro mechanical 
system. The results of this project will contribute 
to native space project, defense technology, and 
industry. 

2. Numerical Methods 

2.1 Model Boltzmann Equation 
Assume there is no external force, we 

consider a class of model Boltzmann equations of 
the form 

( )ff
x
f

t
f

−=
∂
∂
⋅+

∂
∂ +νv , 

where ( , v, )f x t  is the velocity distribution 
function which depends on space, ( , , )x x y z= , 
molecular velocity, v=(v ,v ,v )x y z  and time t . 
ν  is collision frequency. According to the 
Chapman- Enskog solution to the BGK equation, 
the elastic collision frequency is the form 

µ
ν nkT
= , 

where T  is temperature, n  is number density, 
k  is the Boltzmann constant and µ  is the 
viscosity assumed temperature dependence 
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The subscript ‘ref’ states the reference condition of 
the temperature viscosity power law. The power 
χ  is constant for a given gas. If we assume the 
dependence of the viscosity on the temperature as 

for the Chapmann- Cowling gas of inverse ς  
power law, we have 

( )12
3
−
+

=
ζ
ζχ . 

For Maxwell molecules, 5=ς then 1=χ ; thus 
the collision frequency is independent of 
temperature. The viscosity of  freestream state 
µ∞  relate to the freestream mean free path λ∞  
by the relation 

16
5 2mn RT
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The local Maxwellian equilibrium 
distribution function given by  
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Since the work of Bhatnagar, Gross and Krook, 
the BGK model, there are serval other nonlinear 
model Boltzmann equations have been proposed. 
These include the ellipsoidal model by Holway 
and by Cercignani & Tironi, the polynominal and 
trimodal gain function models by Segal & Ferziger, 
and the one by Shakov and by Abe & Oguchi. The 
later three used rather systematic procedures to 
construct model equations for the nonlinear 
Boltzmann equation. For BGK model Mf f+ = , 
for Shakov model, we have 

( ) ( )2
1 Pr 5

1
5

M
cc q RTf f

pRT
+

⎡ ⎤− ⋅ −⎢ ⎥= +⎢ ⎥
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Here, Pr is the Prandtl number and is equal 2/3 for 
a monatomic gas. The number density n, flow 
velocity u , and temperature of the gas T are the 
first three moments of the distribution function 

∫
∞

∞−

= vfdn  ∫
∞

∞−

= vvfdun  

 ( )∫
∞

∞−

−= vv
2
3 2 fdunT  , 

where R is the gas constant, uc -v= is the 
peculiar velocity of the molecule.  

2.2 The Discrete Ordinate Method 
The distribution function is a function of 7 

independent variables. In order to remove the 
functional dependency on the velocity space of the 
equations, the discrete ordinate method is applied. 
This method, which consists of replacing the 
integration over velocity space of the distribution 
functions by an appropriate quadrature, requires 
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the values of the distribution function only at 
certain discrete velocites, that is 

, ,( , , , v , v , v , ) ( , , , )l m n l m mf x y z t f x y z t=  
The choice of the discrete values of velocity 

point is dictated by the consiferation that our final 
interest is not in the distribution functions 
themselves but in the moments. Hence, the 
macroscopic moments given by integrals over 
molecular velocity space can be evaluated by the 
same quadrature. The discrete ordinate method is 
then applied to the model Boltzmann equation for 
the $(v_x, v_y, v_z)$ velocity space and the 
resulting differential equations are 

, , , , , , , ,

, , , ,

v v v
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for Cartesian coordinate, and 
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for general coordinate, where  
, , v v vl m n l x m y n zU ξ ξ ξ= + +  

, , v v vl m n l x m y n zV η η η= + +  

, , v v vl m n l x m y n zW ς ς ς= + +  

Once the discrete distribution functions , ,l m nf  are 
solved, one can obtain all the moment integrals 
using Gauss-Hermite quadrature.  

3. Results and Discussions 
The first example we considered is the lid 

driven cavity flow with domain length 1. It is 
noted that the discretization in the phase space 
(physical and molecular velocity spaces) has been 
progressively refined to ensure accurate results. In 
general, in rarefied flow conditions we need a 
large number of discrete velocities, while the 
physical grid may be coarse. On the other hand, in 
continuum flow conditions the required number of 
discrete velocities may be reduced, but dense 
physical grids are important to achieve good 
accuracy. However, The present works used a 
non-uniform grid system with 101×101 grid points 
which are exponentially stretched away from the 
wall and the minimum grid space near the wall is 
depended by the Knudsen numbers. The number 
of discrete velocities is 26×26 for all cases. The 
results using Shakov model of monatomic argon 
gas are presented for the Mach number of moving 
lid is 0.9, the Knudsen numbers are 0.001, 0.0033, 

0.01 and 0.1, the Reynolds number based on lid 
velocity and length of cavity are 1483, 148, 15, 
and 1.5, respectively. 

Figures 1(a) to (d) show the computational 
results of streamline for the above cases referred 
the different Knudsen numbers. For the cases of 
Kn=0.001, 0.0033, 0.01 and 0.1, the streamline 

plot show a large primary vortex near the center of 
cavity, along with two secondary vortices at the 
bottom vortices at the bottom corners. The size of 
secondary vortex at bottom corners is decreasing 
by increasing the Knudsen number, and 
degenerated for the case of Kn=0.1. The effect of 
rarefied gas on the secondary vortex is 
investigated. 

The second example we computed is the 
unsteady starting vortex flow. Early stages of 

Figure 1, streamline for the cases of  (a) Kn=0.001, 
(b) Kn=0.0033, (c) Kn=0.01, and (d) Kn=0.1 

(a) (b)

(c) (d)

Figure 2, instantaneous streamlines for the cases of  
(a) Kn=0.01, (b) Kn=0.005, and (c) Kn=0.001. 

(a)

(b)

(c)
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unsteady viscous flows around an impulsively 
started circular cylinder at Knudsen numbers of 
0.01, 0.005 and 0.001 are analysed numerically. 
The Mach number of upstream velocity is 0.2 for 
all cases. The corresponding Reynolds number, 
based on the upstream velocity and the diameter of 
the cylinder, are 33, 165 and 330, respectively. In 
present computations, the far field boundary is set 
at 20 diameters away from the center of the 
cylinder. A 151×181 O-type grid for the half circle 
domain in phyical space and 12×12 discrete points 
in velocity space are used.  

Figure 2(a) to (c) show the results of 
instantaneous streamlines using BGK model with 
Maxwell gas at three different Knudsen number. 
The effect of Knudsen number on the wake behind 
a circular cylinder was presented. It depicts the 
length and width of recirculating zones varying 
with Kundsen number changed. 

The third example is the development of 
dilute flow over a vertical plate that is inserted into 
a uniform flow at zero time. The length of the 
plate is 1, located at x =0, the computational 

domain covered from –10 to 40 in x direction and 
from –10 to 10 in y direction. A two blocks grid 
system with 51×121 and 201×121 points is used. 
The case is for the flow of monatomic Maxwell 
gas with BGK model at Mach number 0.9, 
Knudsen number 0.005, and corresponding 
Reynolds number 66. The surface of the plate is 
diffusely reflecting with full accommodation to a 

temperature equal to the freestream temperature.  
Figure 3(a) to (c) illustrated the results of 

instantaneous flow direction lines at time 14, 66, 
and 146. When the plat is inserting into the flow, a 
disturbing wave move upstream and downstream, 
and wave diffracting around the edges. The 
vortices formed behind the plate after a short 
period. The flow remains symmetrical at time 66. 
Some asymmetry develops near the downstream 
stagnation point. The asymmetry grows and the 
flow deflection occurred near the center of wake, 
and then fully developed wake is attained. Figure 
4 shows the local Knudsen number of the flow at 
fully developed wake instability. 

4. Concluding Remarks 
Based on the above computed examples, we 

conclude that the present proposed method 
provides an efficient way to obtain numerical 
solutions of the model Boltzmann equations for 
rarefied gas flows, particularly for flows with low 
or moderate Mach numbers. The present method 
although capable of treating high Mach number 
flows, but is very computationally expensive. In 
the future works, we will develop an efficient 
hybrid method, coupling model Boltzmann and 
Navier-Stokes solver to an unified gas flow solver, 
to treat high Mach number flows. Also, further 
improvement on the adaptive grid points in 
velocity space is warranted.  
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(a)

(b)

Figure 3, flow direction lines for nondimensional 
time (a) t =14, (b) t =66, and (c) t =146. 

Figure 4, local Knudsen number at time 146. 
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