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Unified Computational Methods for Rarefied and Continuum Flow
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Abstract

On Continuum flow regime, the CFD methods based on the solution of Navier-Stokes equations are
used to obtain surface pressure, temperature, the flow structure around vehicle, and the coefficients of
aerodynamic characteristic. For rarefied gas flow regime, which has larger Knudsen number, DSMC
method has been widely used. However, for the nearly continuum flow regime, the solution of
Navier-Stokes equation does not obtain accurate results and the DSMC method is difficult to deduce
reliable results because the numerical results are amenable to statistical fluctuations and the computing
time is expensive. It is necessary to develop an unified numerical method for simulation of rarefied,
transition, and continuum flow and used for aerodynamic design of space vehicle, especially in nearly
continuum flow regime. Therefore, one of the purposes of this project is to develop a numerical solver for
model Boltzmann equation by integrating descrete ordinate method and CFD method for unified
simulations of rarefied and continuum gas flows. After serval example testing, we conclude that the
present proposed method provides an economical and efficient way to obtain accurate numerical solutions
of the model Boltzmann equations for rarefied gas flows, particularly for flows with low or moderate
Mach numbers. In the future works, developing an efficient hybrid method, coupling model Boltzmann
and Navier-Stokes solver, and further improvement on the adaptive grid points in velocity space are
warranted. The results of this project will contribute to native space project, defense technology, and
industry.

Keywords: Rarefied gas dynamics, Model Boltzmann equation, Discrete ordinate method, High resolution
conservative scheme, WENO scheme, Gauss-Hermite quadrature.

. been illustrated. However, for low Mach number

1. Introduction _ N _ or nearly continuum flow, it is difficult to deduce
The rarefied gas flow in transitional regime reliable results because the numerical results are
between continuum regime and free-molecule  gmenable to statistical fluctuations. Instead, the
regime involved in microelectrical-mechanical difficulties in direct solving the Boltzmann
devices, vacuum systems, and high altitude  equation are treating the nonlinear collision term.
aerodynamics are difficult to treat either  Recently, Kolobov and Aristov proposed the direct
experimentally or theoretically. The physical  pymerical solution (DNS) of Boltzmann equation
parameter characterized the rarefied gas flow is  and a unified solver for rarefied and continuum
the Knudsen number which is defined as the ratio flows [2]. But, it consumes computing time and is
of the mean free path to the characteristic length.  not sujtable for practical usage. Thus, instead of
The capability to accurately predict the rarefied  solying the full Boltzmann equation, one solves
gas flows over the complete spectrum of flow  {he kinetic model Boltzmann equation to develop a

regimes is very important and desirable. The more economic and efficient way of studying
Navier-Stokes equations are inadequate to study  rarefied gas flow.

rarefied gas flows, the kinetic theory and the In the present work, the discrete ordinate
Boltzmann equation needs to be used. The kinetic  method was applied to the distribution function to
approach is valid in the whole range of the gas  replace its continuous dependency on the velocity
rarefaction. This is an important advantage when space by a set of distribution functions in physical
systems with multiscale physics are investigated. space and time but point functions in velocity

The most commonly and well known  gnace The resulting set of differential equations
numerical method for studying the rarefied gas can be cast into hypersonic conservation laws
flow is the direct simulation Monte Carlo (DSMC) form with nonlinear source terms. Here, we
method [1]. Applications of DSMC method to @ applied the weighted essentially nonoscillatory
wide variety of rarefied gas flow problems have method[3], which developed for Euler and
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Navier-Stokes equations, and developed an
efficient numerical method to solve model
Boltzmann equation for simulation of rarefied gas
flow covering the full spectrum of flow regimes.
The purpose of the three years project is to
develop an efficient unified flow solver for
rarefied and continuum flows, which was coupled
the numerical methods for solving model
Boltzmann and Navier-Stokes equations. To
accelerate computation, some new methods will be
developed including adaptive discrete ordinate
method, scale factor quadrature, domain switching
criteria, and parallel computing algorithm etc. All
the new methods will be calibrated and validated
with some standard test cases. The new methods
developed in this project can be applied to the
aerodynamic design of launch vehicle, sounding
rocket, and tactical ballistic missile. Beside
aerodynamic application, the new methods are
useful for many technological applications, like as
altitude control nozzle of satellite, vacuum pump,
chemical vapor deposition in semiconductor
manufacturing, and micro electro mechanical
system. The results of this project will contribute
to native space project, defense technology, and
industry.

2. Numerical Methods

2.1 Model Boltzmann Equation

Assume there is no external force, we
consider a class of model Boltzmann equations of
the form

ﬂJr\*/-izv(fuf),
ot OX
where f(X,V,t) is the velocity distribution

function which depends on space, X=(X,Y,2),
molecular velocity, \7=(Vx,vy,vz) and time t.

v is collision frequency. According to the
Chapman- Enskog solution to the BGK equation,
the elastic collision frequency is the form

nkT
V=—,

Y7,
where T is temperature, n is number density,
k is the Boltzmann constant and x is the

viscosity assumed temperature dependence

X
T
H /uref [Tref \] '

The subscript ‘ref” states the reference condition of
the temperature viscosity power law. The power
y is constant for a given gas. If we assume the

dependence of the viscosity on the temperature as
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for the Chapmann- Cowling gas of inverse ¢

power law, we have
¢+3
2(¢ 1)
For Maxwell molecules, ¢ =5then y =1; thus

the collision frequency is independent of
temperature. The viscosity of freestream state

L, relate to the freestream mean free path A4,
by the relation

Z:

PR
“ 5 mn,./27RT,
The local Maxwellian equilibrium

distribution function given by

§ 2
fM :n(2 1 jzexp(—c—]
7RT T

Since the work of Bhatnagar, Gross and Krook,
the BGK model, there are serval other nonlinear
model Boltzmann equations have been proposed.
These include the ellipsoidal model by Holway
and by Cercignani & Tironi, the polynominal and
trimodal gain function models by Segal & Ferziger,
and the one by Shakov and by Abe & Oguchi. The
later three used rather systematic procedures to
construct model equations for the nonlinear

Boltzmann equation. For BGK model f*=f",
for Shakov model, we have

(1- Préq(AT )

fr=1Ff"1+

Here, Pr is the Prandtl number and is equal 2/3 for
a monatomic gas. The number density n, flow
velocity U, and temperature of the gas T are the
first three moments of the distribution function

where R is the gas constant, C=V-Ujs the
peculiar velocity of the molecule.

2.2 The Discrete Ordinate Method

The distribution function is a function of 7
independent variables. In order to remove the
functional dependency on the velocity space of the
equations, the discrete ordinate method is applied.
This method, which consists of replacing the
integration over velocity space of the distribution
functions by an appropriate quadrature, requires
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the values of the distribution function only at
certain discrete velocites, that is

f (X’ y! Z’VI ' Vm'Vn’t) = fl,m,m(x’ y! Z’t)

The choice of the discrete values of velocity
point is dictated by the consiferation that our final
interest is not in the distribution functions
themselves but in the moments. Hence, the
macroscopic moments given by integrals over
molecular velocity space can be evaluated by the
same quadrature. The discrete ordinate method is
then applied to the model Boltzmann equation for
the $(v_x, v_y, v_z)$ velocity space and the
resulting differential equations are

aflmn aVlflmn amelmn aanlmn
——+ —+ ==+ =

ot OX oy oz
:V( fl,+m,n - fl,m,n)

for Cartesian coordinate, and

a fI,m,n a UI,m,n fl,m,n a VI,m,n fI,m,n
ol J o0& J on J

W o f
+i I,m,n "I,m,n — VJ(fler s
Og J .

for general coordinate, where
Uy mn = ViSy +Vm§y +V,. &,
Vima = Vill V], +V,17,
Winn = Vigy +Vas, +Vis,

Once the discrete distribution functions f

fI,m,n)

are

I,m,n
solved, one can obtain all the moment integrals
using Gauss-Hermite quadrature.

3. Results and Discussions

The first example we considered is the lid
driven cavity flow with domain length 1. It is
noted that the discretization in the phase space
(physical and molecular velocity spaces) has been
progressively refined to ensure accurate results. In
general, in rarefied flow conditions we need a
large number of discrete velocities, while the
physical grid may be coarse. On the other hand, in
continuum flow conditions the required number of
discrete velocities may be reduced, but dense
physical grids are important to achieve good
accuracy. However, The present works used a
non-uniform grid system with 101x101 grid points
which are exponentially stretched away from the
wall and the minimum grid space near the wall is
depended by the Knudsen numbers. The number
of discrete velocities is 26x26 for all cases. The
results using Shakov model of monatomic argon
gas are presented for the Mach number of moving
lid is 0.9, the Knudsen numbers are 0.001, 0.0033,
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0.01 and 0.1, the Reynolds number based on lid
velocity and length of cavity are 1483, 148, 15,
and 1.5, respectively.

Figures 1(a) to (d) show the computational
results of streamline for the above cases referred

the different Knudsen numbers. For the cases of

Kn=0.001, 0.0033, 0.01 and 0.1, the streamline

Kn=0.1 M_=0.9 Re=15 Grid-4(101x101,107)

Kn=0.0033 M _=0.9 Re=450 Grid-2{101x101,107)
0.0

05 0.5

g 05 0 %0 05

Figure 1, streamline for the cases of (a) Kn=0.001,

(b) Kn=0.0033, (c) Kn=0.01, and (d) Kn=0.1

plot show a large primary vortex near the center of
cavity, along with two secondary vortices at the
bottom vortices at the bottom corners. The size of
secondary vortex at bottom corners is decreasing
by increasing the Knudsen number, and
degenerated for the case of Kn=0.1. The effect of
rarefied gas on the secondary vortex is
investigated.

The second example we computed is the
unsteady starting vortex flow. Early stages of

Figure 2, instantaneous streamlines for the cases of
(a) Kn=0.01, (b) Kn=0.005, and (c) Kn=0.001.

Kn=0.01 M_=0.9 Re=148 Grid-2{101x101,107)
oo

0

Kn=0.001 M_=0.9 Re=1483 Grid-2{101x101,107)
00

0
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unsteady viscous flows around an impulsively
started circular cylinder at Knudsen numbers of
0.01, 0.005 and 0.001 are analysed numerically.
The Mach number of upstream velocity is 0.2 for
all cases. The corresponding Reynolds number,
based on the upstream velocity and the diameter of
the cylinder, are 33, 165 and 330, respectively. In
present computations, the far field boundary is set
at 20 diameters away from the center of the
cylinder. A 151x181 O-type grid for the half circle
domain in phyical space and 12x12 discrete points
in velocity space are used.

Figure 2(a) to (c) show the results of
instantaneous streamlines using BGK model with
Maxwell gas at three different Knudsen number.
The effect of Knudsen number on the wake behind
a circular cylinder was presented. It depicts the
length and width of recirculating zones varying
with Kundsen number changed.

The third example is the development of
dilute flow over a vertical plate that is inserted into
a uniform flow at zero time. The length of the
plate is 1, located at x =0, the computational

(a)
Nz © |

T T T T T T T T
1] 4 8 12

Figure 3, flow direction lines for nondimensional

time (a) t =14, (b) t =66, and (c) t =146.
domain covered from —10 to 40 in x direction and
from =10 to 10 in y direction. A two blocks grid
system with 51x121 and 201x121 points is used.
The case is for the flow of monatomic Maxwell
gas with BGK model at Mach number 0.9,
Knudsen number 0.005, and corresponding
Reynolds number 66. The surface of the plate is
diffusely reflecting with full accommodation to a
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temperature equal to the freestream temperature.
Figure 3(a) to (c) illustrated the results of
instantaneous flow direction lines at time 14, 66,
and 146. When the plat is inserting into the flow, a
disturbing wave move upstream and downstream,
and wave diffracting around the edges. The
vortices formed behind the plate after a short
period. The flow remains symmetrical at time 66.
Some asymmetry develops near the downstream
stagnation point. The asymmetry grows and the
flow deflection occurred near the center of wake,
and then fully developed wake is attained. Figure
4 shows the local Knudsen number of the flow at
fully developed wake instability.

Figuore 4, Ioca4l Knudsesn numbe1r2 at time 146.

4. Concluding Remarks

Based on the above computed examples, we
conclude that the present proposed method
provides an efficient way to obtain numerical
solutions of the model Boltzmann equations for
rarefied gas flows, particularly for flows with low
or moderate Mach numbers. The present method
although capable of treating high Mach number
flows, but is very computationally expensive. In
the future works, we will develop an efficient
hybrid method, coupling model Boltzmann and
Navier-Stokes solver to an unified gas flow solver,
to treat high Mach number flows. Also, further
improvement on the adaptive grid points in
velocity space is warranted.
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equations, including BGK, Shakov, and Ellipsoial model), with discrete
ordinate method, Scaling Factor Gauss- Hermite quadrature, and high
order accurate WENO schemes.
'F"‘H"* —Lé_% jvéL%gugcuf TORH %6,@&{—?\3@;{7%4 %?p;z by 7 r},ﬁ)% & * 5
3 E X ERAITE LR ARG AT BT R
?%%}15.& f"l%‘fﬂl%—'.}"&"‘;’l’i E&]Pfﬁl;ﬁ:"%g g f:”nb}i"’LTEl’}_

38 37 CFD = % f2 Boltzmann #-3] = #2;%( # 7z BGK-Shakov 2
Ellipsoidal = ﬁéﬁtwj) Rt «“;ﬁf;,‘:;,? i = g A RO - N

Poay =g 13 ATHEMII R R P M BRI (R
o —%i’—?ﬁf;‘i o

N LT R E e TR Ry Tty T
fa‘.% % ﬁlﬂ' l:’hiF f_é_f_ e 1 ﬁ;"/‘: - }%"}'5—;]"5?&

MOLFAFPELAEGFEB -0 - PESEFFLERAE > - HiE FHER
s kian 8w (ﬁr#iﬁtr%;ﬁiiv’ o) o

¥ 2 ABFFIEEFAVFEN  HIBBTIHFEJIZAENG o

3. MR E A I ;%"E f’rﬁ,EFz"’# °



