南華大學機構典藏系統:Item 987654321/21382
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18278/19583 (93%)
Visitors : 1056734      Online Users : 508
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nhuir.nhu.edu.tw/handle/987654321/21382


    Title: 應用類神經網路於網際網路探勘
    Other Titles: Applying Neural Network to Web Mining
    Authors: 蘇東坡
    Su, Dong-po
    Contributors: 資訊管理學研究所
    洪明輝;吳光閔
    Ming-huwi Horng;Guang-ming Wu
    Keywords: Feature weight detector;Web mining;Proportional learning vector quantization;Radial basis function network
    Date: 2003
    Issue Date: 2015-06-04 10:21:33 (UTC+8)
    Abstract:   在本論文中,我們應用了一連串類神經網路的技術在網際網路探勘的領域上,使能夠解決在網路資料分類的問題。它首先利用特徵權值探測的方法,從複雜且大量的訓練資料中找出可靠的特徵,再利用這些特徵配合比例式學習向量量化網路的方法找出最適合的群中心點。最後,將群中心點應用於徑向機網路以分類測試資料庫。在實驗中我們將資料依據Session Length來預作分割,再利用這些分割的資料來做實驗,由最後的實驗我們發現做適當的資料分割能夠獲得較好的正確率。 
      In this thesis, we apply widely-used data mining techniques, neural network, in the user’s characteristics of classification on WWW. In this proposed method, we first utilize feature weight detector networks to discover the reliable features from mass and complex training data on WWW. Secondly, we use the proportional learning vector quantization network to learn the appropriate centroid of each cluster. Finally, we apply radial basis function network associated with the centroid of clusters to classify the test data. We in advance partition the data set into several data sections that are used in experiments according to session length. Experimental result show that it has better classification result than ones using overall data set. 
    Appears in Collections:[Department of Information Management] Disserations and Theses

    Files in This Item:

    File Description SizeFormat
    091NHU05396024-001.pdf723KbAdobe PDF1View/Open
    index.html0KbHTML226View/Open


    All items in NHUIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback