南華大學機構典藏系統:Item 987654321/21690
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18278/19583 (93%)
Visitors : 1460318      Online Users : 376
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nhuir.nhu.edu.tw/handle/987654321/21690


    Title: 模糊邏輯與資料探勘技術為基礎在顧客關係管理上之研究與應用
    Other Titles: Using Fuzzy Logic and Data Mining for Customer Relationship Management
    Authors: 蘇建源
    Su, Chien-Yuan
    Contributors: 資訊管理學研究所
    邱宏彬
    Hung-Pin Chiu
    Keywords: 資料方塊;單層次關聯法則;顧客關係管理;關聯法則;漸進式挖掘;多階層關聯法則;資料探勘;模糊切割;線上挖掘
    Data Cube;Association Rules;Incremental Mining;Data Mining;Fuzzy Partition;On-Line Mining
    Date: 2004
    Issue Date: 2015-06-17 15:50:16 (UTC+8)
    Abstract:   在現今競爭激烈與變化快速的環境下,瞭解與滿足顧客的需求是企業獲利的關鍵因素。因此,顧客關係管理就成為當今企業非常重視的議題。利用資料探勘技術可以幫助企業從龐大且複雜的顧客資料庫中找出隱含的資訊,其中又以關聯法則挖掘法最為著名。如何有效地推導出關聯法則,在過去已經有許多方法相繼被提出,但大部分的演算法對於(a)數值型資料的處理、(b)漸進式挖掘以及(c)線上挖掘等問題無法有效地同時加以處理。因此本研究提出以模糊切割與資料方塊為基礎之關聯法則演算法來建構單層次以及多階層等關聯法則演算法。並應用於顧客關係管理上的探討,來幫助企業在制定客製化行銷策略的決策上的一個有力的參考依據。
      In the era of great competition, understanding and satisfying customers’ requirements are the critical tasks for a company to make a profit such that customer relationship management becomes the important business issue at present. With the help of the data mining techniques, the manager can explore and analyze from a great quantity of data to discover meaningful patterns and rules. Mining association rules from transaction databases is most commonly seen in data mining. However, most conventional algorithms can not simultaneously and effectively satisfy the following requirements: (a) the relationships among transactions with numeric values, (b) incremental mining, and (c) on-line mining. In this thesis, we integrate the data cube and fuzzy partition techniques to propose a single-level association rule miner and a multi-level association rule miner. This mined knowledge can be applied in customer relationship management to help decision marker make correct business decisions for marketing strategies.
    Appears in Collections:[Department of Information Management] Disserations and Theses

    Files in This Item:

    File Description SizeFormat
    092NHU05396010-001.pdf1710KbAdobe PDF369View/Open
    index.html0KbHTML211View/Open


    All items in NHUIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback