南華大學機構典藏系統:Item 987654321/22896
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18278/19583 (93%)
Visitors : 1091390      Online Users : 476
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nhuir.nhu.edu.tw/handle/987654321/22896


    Title: 使用去均值影像之物件分割方法
    Other Titles: Object Segmentation Using Mean Removed Images
    Authors: 邱舶軒
    Chiu, Po-hsuan
    Contributors: 資訊管理學研究所
    廖怡欽
    Yi-ching Liaw
    Keywords: 物件分割;去均值影像
    Object Segmentation;Mean Removed Image
    Date: 2007
    Issue Date: 2015-08-07 13:27:47 (UTC+8)
    Abstract:   在視訊設備普及的今日,視訊內容的分析與處理工作變得愈來愈重要。視訊內容物件分割方法在視訊內容自動分析應用中是很重要的一項技術。   本論文提出一個快速的視訊內容物件分割方法,所提方法利用去掉均值的影像可保留畫面紋理資訊及降低光源變化與陰影對背景影響的特性來分割物件,可達到快速有效分割物件的目的。實驗結果顯示,我們所提的物件分割方法錯誤率比現有快速物件分割方法低,執行速度則可提升約25%~86%。
      In this thesis, we present a novel video object segmentation approach. The proposed approach extracts objects from a frame in a video stream using the difference information between the mean-removed versions of the current and referenced frames. Due to the mean-removed version of a frame reduces the influence of light variation on the frame and reserves the texture information of the frame, the proposed approach can effectively segment objects for video sequences and remove shadow pixels. Experimental results show that the proposed approach has the least computation time among object segmentation approaches with shadow removal capability. Compared with the available approaches, our approach reduces the computation time by 25% to 86% with better segmentation accuracy.
    Appears in Collections:[Department of Information Management] Disserations and Theses

    Files in This Item:

    File Description SizeFormat
    095NHU05396019-001.pdf1202KbAdobe PDF560View/Open
    index.html0KbHTML232View/Open


    All items in NHUIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback