南華大學機構典藏系統:Item 987654321/28420
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 18278/19583 (93%)
造访人次 : 1024857      在线人数 : 957
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://nhuir.nhu.edu.tw/handle/987654321/28420


    题名: 應用類神經網路於梨山地滑地即時地下水位預測
    其它题名: Using Artificial Neuron Network on the Real-Time Prediction of Groundwater Level of Lishan Landslide
    作者: 洪永峰
    HONG, YUNG-FENG
    貢獻者: 科技學院永續綠色科技碩士學位學程
    洪耀明
    HONG, YAO-MING
    关键词: 深層崩塌;地下水位;類神經網路
    Deep-seated landslide;Groundwater level;Artificial Neuron Network
    日期: 2020
    上传时间: 2022-05-23 15:40:53 (UTC+8)
    摘要:   台灣的地形及氣候容易誘發崩塌,其中深層崩塌與地下水位有直接關係,本研究以類神經網路進行崩塌地地下水預測,首先收集梨山地滑地之歷史降雨與地下水位資料,再以Hong(2017)研發之類神經網路模式為基礎,選取一場暴雨,進行模式之參數校準及驗證,並應用於之後發生之另一場暴雨。分析結果發現,可以精準預測一小時、二小時後之地下水位,作為坡地崩塌預警系統建置之參考依據。
      Taiwan's topography and climate are prone to induce landslide. Deep-seated landslide is directly related to groundwater level. In this study, the neural network was used to predict groundwater in deep-seated landslide areas. First, the historical rainfall and groundwater level data of the Lishan Landslide were collected. Based on neural network models developed by Hong (2017), a heavy rainfall was selected to perform parameter calibration and verification of the model, which was applied to predict the groundwater level that occurred later. Analysis found that the groundwater level can be accurately predicted one hour and two hours later, and used as a reference for the establishment of a deep-seated landslide warning system.
    显示于类别:[永續綠色科技碩士學位學程] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    108NHU00159027-001.pdf2727KbAdobe PDF252检视/开启
    index.html0KbHTML661检视/开启


    在NHUIR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈