南華大學機構典藏系統:Item 987654321/29215
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18278/19583 (93%)
Visitors : 1023417      Online Users : 445
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nhuir.nhu.edu.tw/handle/987654321/29215


    Title: 特徵縮放於深度學習股市價格預測之影響
    Other Titles: The Effect of Feature Scaling on Deep Learning Stock Market Price Prediction
    Authors: 丁麗文
    TING, LI-WEN
    Contributors: 資訊管理學系
    王佳文
    WANG, JIA-WEN
    Keywords: 特徵縮放;深度學習;股市價格;技術指標
    Feature Scaling;Deep Learning;Stock Market Price;Technical Indicators
    Date: 2022
    Issue Date: 2022-09-06 14:41:01 (UTC+8)
    Abstract:   近年來機器學習與深度學習模型在巨量資料分析和科技金融方面取得了顯著的成效。時間序列分析主要是利用歷史資料預測未來走勢,然而過去時間序列相關研究較少探討特徵縮放的影響性。本研究利用常見的技術指標,並結合不同特徵縮放及深度學習演算法進行股市價格預測分析。在實證方面利用台灣證券交易所(TWSE)的Α公司2015年到2019年實際股票資料進行驗證,並進行比較分析。綜合上述,本研究目的如下: (1)探討使用不同特徵縮放對於遞迴歸神經網路準確度影響(2)探討加入常見技術指標是否可提高遞迴歸神經網路準確度(3)驗證傳統 ΑRIMΑ 模型與遞迴歸神經網路預測準確度之比較(4)探討不同神經元數及層數對於預測準確度之影響 (5)實際採用2015-2019年Α公司實際股票資料來進行實例驗證
      In recent years, machine learning and deep learning models have achieved significant success in huge data analysis and technology finance. Time series analysis is mainly used to predict future trends using historical data, however, the impact of feature scaling has been less explored in past time series-related studies. This study uses common technical indicators and combines different feature scaling and deep learning algorithms to conduct stock market price prediction analysis. Empirical validation is conducted using actual stock data from 2015 to 2019 of Α companies on the Taiwan Stock Exchange (TWSE), and comparative analysis is performed.The purpose of this study is as follows: (1) The effect of using different feature scaling on the accuracy of recursive neural networks.(2) To investigate whether the inclusion of common technical indicators can improve the accuracy of recurrent neural networks.(3) A comparison of the prediction accuracy of the traditional ΑRIMΑ model with that of the recurrent neural network.(4) Investigate the effect of different parameters on prediction accuracy(5) Using an actual stock dataset as an experimental case.
    Appears in Collections:[Department of Information Management] Disserations and Theses

    Files in This Item:

    File Description SizeFormat
    110NHU00396013-001.pdf3404KbAdobe PDF642View/Open
    index.html0KbHTML316View/Open


    All items in NHUIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback