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摘                要 

 

隨著科技的進步，監視系統的安裝也愈來愈廣泛，要檢查擷取下

來的畫面中是否發生特定事件，通常需要很長的時間及大量的人力介

入。為了解決這個問題，目前已有許多可自動判斷視訊物件行為的方

法被提出來，比起其他方法，以移動歷史影像為基礎的方法通常具有

計算複雜度低與容易實作等優點，因此也比較受大家的歡迎。本篇論

文提出一個快速移動歷史影像方法，針對每一已知行為事先建立多組

特徵值、運用部分距離計算法、以及變換區塊計算順序，來降低移動

歷史影像方法的運算時間。為了驗證所提方法的有效性，本篇論文採

用 Chen 方法中九個區域的平均像素移動方向作為特徵值，並以歐基里

德距離作為相似度比對。依據實驗結果顯示，所提方法確實能夠有效

降低運算時間。 

 

關鍵字：移動歷史影像法、視訊物件行為識別 
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ABSTRACT 
 

As the progress of technology, the surveillance system is installed more 

and more widely. It usually requires a lot of time and human efforts to 

check if a specified event occurs in the captured video. To solve this 

problem, there are many approaches were proposed to recognize behaviors 

of a video object automatically. Among available behavior recognition 

methods, the MHI-based approaches are more popular for they have less 

computational complexity and are easier than another. In this thesis, a fast 

MHI approach is proposed to reduce the computation time of the MHI 

approach by storing the multiple sets of features for a predefined behavior, 

using the partial distance computation method, and changing the calculated 

order. Nine local information proposed by Chen and squared Euclidean 

distance are used in the behavior matching process in this thesis to manifest 

the performance of the proposed approach. Experiment results show that 

the proposed method can effectively reduce the computation time of MHI 

approach. 

 

Keyword: Motion History Image, Video Object Behavior Recognition 
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Chapter 1 Introduction 

The surveillance system is a system to obtain a series of images (frames) from real 

world by using a video camera and the captured images are transferred to a remote 

monitor for displaying. Through the displayed images, one can realize what is happened 

in front of the camera. That is, a person can sit in front of a monitor to see the images 

transferred from the remote cameras to check if there is something happened. Moreover, 

the captured images can be saved in a storage device, such as a hard disk, to make the 

captured images can be replayed in any time and at any places. The stored images can 

also be used as evidences for used in the criminal cases. Nowadays, the surveillance 

system is a very useful and popular technology and is widely deployed everywhere. 

The surveillance system can be set up for various purposes [1], such as the traffic 

monitoring [2-3], living environment monitoring [4], and remote monitoring [5]. In the 

application of traffic monitoring, the surveillance system is installed to take frames of 

roads. The captured images are then transferred to the traffic monitoring center for 

showing and storing. It is convenient for people to see whether an accident or a traffic 

jam occurred or not. In the case that an accident occurred, images recorded in the 

surveillance system can be used to clarify the reason of the accident. When the 

surveillance system is used to help increasing the security of living environment, 

cameras are deployed to take images of the elevator, the entrance of building, or the 

corners in a community. In such a case, the administrator of the surveillance system can 

sit in the security operation center and easily monitor the surrounding environment of 
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the community. For the remote monitoring application, the surveillance system is 

applied to capture images at where humans cannot be there all the time or unreachable. 

For instance, NASA launched a space ship to take pictures of Mars [6] and the Spirit 

rover [7] to analyze the distribution and composition of minerals, rocks, and soils. 

In above applications of the surveillance system, it requires a lot of time and 

human efforts to check the content of video and is very easy to make mistakes if the 

person who is watching the monitor was tired or not attentive. Besides, the task of 

searching a specific event from a lengthy video stream is often required and difficult. To 

solve these problems, many approaches were proposed [8-12] for analyzing the video 

content automatically. Such approaches can be categorized into two categories that are 

the still image analyzing approaches [8-9] and the motion recognition approaches 

[10-12]. 

One famous example of the still image analyzing approaches is the car license 

plate recognition system [9]. The application of car license plate recognition is to 

automatically extract characters on the car license plate from a car image. To extract 

characters from a car image, a series of image processing techniques must be applied. 

These techniques include: color space conversion, license plate localization, character 

segmentation, and pattern recognition. The extracted characters can then be used as a 

key to search the car license database for checking if the car in the image is legal or 

illegal. If the license is illegal, this information will be passed to the parking office or 

the police office for taking proper actions. Comparing to the motion recognition 

approaches, the still image analyzing technology is maturer and easier, as well as has 

less limitation on available computation time. 
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The motion recognition technology [10-12] is applied to recognize the behavior of 

a video object from a series of motions which are recorded in a set of successive video 

frames. A classical motion recognition approach consists of a training phase and a 

testing phase. In the training phase, the surveillance system is installed to capture the 

motion frames of pre-defined behaviors for a video object. For a pre-defined behavior, a 

set of features is obtained from the motion frames of the behavior. That is, in the end of 

the training phase, a batch of feature sets is stored in a behavior database for a set of 

predefined behavior. In the testing phase, a set of features is first extracted from the 

input frames, which are usually captured in real time and from the surveillance system, 

of an unknown behavior. The same process of feature extraction to the training phase is 

then progressed to generate the feature set for the motion frames of an unknown 

behavior. Thus, we can deploy some algorithms to match the generated feature set of the 

unknown behavior and feature sets in the behavior database to recognize the unknown 

behavior. 

It is not an easy task to extract a feature set from the motion frames. To conquer 

this problem, many methods have been proposed [13-18], such as hidden Markov 

models (HMM) [16], kinematic modes [17], and motion history image (MHI) approach 

[18]. Among available approaches, the MHI approach usually takes less computational 

time and requires less prior knowledge. The MHI approach is a template-based [19-20] 

video object behavior recognition method. Two types of templates (motion energy 

image and motion history image) are used as patterns of a behavior in the MHI 

approach. Given a set of successive motion frames, to produce the motion energy image 

(MEI) for the motion frames, the object masks, which record the position information 
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From Figure 1-1, we can see that the MHI stores both the orientation information 

and the temporal history of a video object’s movement, while the MEI records the 

moving region of the video object’s motion. These two types of templates are used in 

MHI approach as patterns for recognizing a video object’s behavior. 

Although the MHI approach is more appropriate for recognizing a video object’s 

behavior than the others according to the computational complexity, there still are some 

problems in the MHI approach. The major problem of the MHI approach is that the 

accuracy of the MHI approach is very sensitive to the time interval between two 

consecutive frames, the position of the video object in the frame, and the contour of the 

video object. To overcome these drawbacks of the MHI approach, lots of improving 

methods were proposed [21-30]. 

Chen et al. [29-30] proposed an improved MHI approach to increase the accuracy 

and availability of the MHI method by using a special designed feature extraction 

scheme. Since the information in MEI can also be obtained from the MHI, Chen’s 

method uses only the MHI to generate two sets of features from the MHI of input 

frames. These two sets of features are the motion gradient magnitude histogram 

(MGMH) and the local orientation of MHI. The MGMH is generated by computing the 

gradient of every pixel in the MHI, and the local information of MHI is obtained by 

dividing the MHI into nine blocks and calculating the motion orientation for each block. 

By utilizing the MGMH and the local information of MHI, the accuracy of behavior 

recognition can be effectively improved. 

 Among available MHI based methods, Chen’s method is very appropriate for 

recognizing the behavior of a video object because of higher accuracy. However, the 
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time complexity of Chen’s method is still too high. To reduce the computational 

complexity of Chen’s method, a fast MHI approach is proposed in this thesis. The 

proposed approach adopts a similar feature extraction process as that of Chen’s method 

to remain a similar accuracy as Chen’s method. To reduce the time complexity, three 

processes are presented in this thesis. The first process is to store multiple sets of 

features for a predefined behavior to decrease the MHI generation time. The second 

process is to reduce the distance calculation time using a partial distance calculation 

scheme. The final process is to improve the performance of the partial distance 

calculation scheme by changing the calculated order of features. Through the above 

three processes, the time complexity of the MHI approach can be effectively reduced. 

The rest of this thesis is organized as follows. In chapter 2, the MHI generation 

process and Chen’s method will be introduced. Our proposed method is presented and 

described in chapter 3. Experimental result and conclusions are given in chapter 4 and 

chapter 5, respectively.  
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Chapter 2 Motion History Image Approach 

Motion History Image (MHI) approach was presented by James Davis in 1997 [18] 

which uses temporal templates to represent and recognize human actions. Figure 2-1 

shows the procedures of the MHI approach and the feature extraction for a video object 

from input frames using the MHI approach. A more detail explanation for the feature 

extraction process and behavior matching process are provided in the following 

sections. 

 

 

 

 

 

(a)                                  (b) 

Figure 2-1: (a) The procedure of the MHI approach 

and (b) the feature extraction process. 

2.1 Object extraction process 

 The object extraction process is used to find where the moving object is located in 

the input frame and to generate an object mask for the input frame. There are many 

methods [31-32] developed to deal with this problem. The most common used method 

is the background suppression segmentation (BSS) method [32].  
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2.2 History matrix updating process 

As mentioned in the above step, a pixel in an object mask denotes the appearance 

status of video objects for a particular position. The purpose of the history matrix 

updating process is to record the appearance history for video objects. To accomplish 

this goal, a history matrix with the same size as input frames is maintained. Each 

element in the history matrix is initialized to 0 and updated according to the values of 

the incoming object masks using a timestamp with an initial value of 1.  

Let the current value of timestamp be τ and the value for an element in the object 

mask with coordinate (x, y) at time-point τ be M 
τ(x, y). The updating method for an 

element in the history matrix with coordinate (x, y) at time-point τ is defined in the 

following: 

,ݔఛሺܪ  ሻݕ ൌ 	 ൜
߬										if	ܯఛሺݔ, ሻݕ ൌ 255																																																
0										if	ܯఛሺݔ, ሻݕ ൌ 0		and		ܪఛିଵሺݔ, ሻݕ 	൑ 	 ሺ߬ െ ሻߜ

	   (2-2) 

where δ is the period of time to observe a motion. 

Figure 2-3 gives an example to show how the history matrix is updated under a 

series of the incoming object masks when δ=3. 

From Figure 2-3, we can see that, in the beginning, every element in the history 

matrix is initialized to 0 and is updated using the content of the incoming object masks. 

As shown in Figure 2-3 (b), we have an incoming object mask which includes an object 

appears in the left side of the object mask. Since the object mask in Figure 2-3 (b) is the 

first object mask, we set the value of timestamp to 1. That is, τ is 1 for the first object 

mask. The updating process of the history matrix using the first object mask is to fill up 

the value of τ into elements in the history matrix, which have their corresponding pixel 
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in the object mask with the value of 255, and clear elements in history matrix which 

have values equal to or smaller than (τ – δ) to 0. The updated history matrix for the first 

object mask is given in Figure 2-3 (c). For the successive incoming object masks, the 

value of timestamp is increased by 1 and the similar process is applied to update the 

history matrix. 

 

 

(a) Initial history matrix 

 

 

(b) 1st object mask  (d) 2nd object mask (f) 3rd object mask  (h) 4th object mask 

 

(c) Updated       (e) Updated        (g) Updated        (i) Updated 

  history matrix (τ=1)  history matrix (τ=2)  history matrix (τ=3)  history matrix (τ=4) 

Figure 2-3: An example to show the updating process of the history matrix. 

2.3 MHI generation process 

Once the history matrix is updated and the value of τ is equal to or greater than δ, 

that means we have enough frames available for motion recognition and an MHI can be 

generated using the following equation: 

,ݔఛሺܫܪܯ  ሻݕ ൌ 	 ቊ
	ு

ഓሺ௫,௬ሻି	ሺఛିఋሻ

ఋ
	ൈ 255											if	ܪఛሺݔ, ሻݕ ് 0

	0																																														if	ܪఛሺݔ, ሻݕ ൌ 0
	   (2-3) 

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0  0  0  0  0  0  0
0  0  0  0  0  0  0
0  0  0  0  0  0  0
0  1  1  0  0  0  0
0  1  1  0  0  0  0
0  0  0  0  0  0  0

0  0  0  0 0 0 0
0  0  0  0 0 0 0
0  0  2  2 0 0 0
0  1  2  2 0 0 0
0  1  1  0 0 0 0
0  0  0  0 0 0 0

0 0 0 0 0 0 0
0 0 0 3 3 0 0
0 0 2 3 3 0 0
0 1 2 2 0 0 0
0 1 1 0 0 0 0
0 0 0 0 0 0 0

0 0  0  0  0  0  0
0 0  0  3  4  4  0
0 0  2  3  4  4  0
0 0  2  2  0  0  0
0 0  0  0  0  0  0
0 0  0  0  0  0  0
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After the angles and energies for every pixel in the MHI are obtained, the 

histogram of angles for the MHI could be computed and used as a feature in the 

behavior recognition process. 

Here, the whole angle range of ω is evenly divided into 72 parts and the energy of 

each pixel is used as the weighting value for computing the histogram of angles. The 

computation of histogram with 72 angle parts is given below, where ω is the degree of 

angle for each pixel and ௡ܲ௢௥௠௔௟
ఛ ሺߪሻ denotes the normalized strength of σ th angle part. 

 Êఛሺ߱, ,ݔ ሻݕ ൌ 	 ൝
,ݔఛሺܧ	 ,ݔఛሺߠ	if		ሻݕ ሻݕ ൌ ߱																																																										

and	ܫܪܯఛሺݔ, ሻݕ ് 0,			0 ൑ ߱ ൏ 360
	0															otherwise																																																																			

 (2-7)  

 ܲఛሺ݅ሻ ൌ 	∑ ∑ Êఛሺ݆, ,ݔ ሻ௫,௬ݕ
௜ൈହାସ
௝ୀ௜ൈହ 	 , 0 ൑ ݅ ൏ 72      (2-8) 

 ௔ܲ௩௚
ఛ ሺ݅ሻ ൌ 	∑ ܲఛሺ݊ሻ 72⁄଻ଵ

୬ୀ଴           (2-9) 

 ௡ܲ௢௥௠௔௟
ఛ ሺߪሻ ൌ 	

௉ഓሺఙሻି௉ೌ ೡ೒
ഓ

ඩ
∑ ൫௉ഓሺ௠ሻି௉ೌ ೡ೒

ഓ ൯
మళభ

೘సబ
଻ଶ
൘

	 , 0 ൑ ߪ ൏ 72     (2-10) 

After the histogram is evaluated, we have the strengths of 72 angle parts. Besides 

of using the histogram as a feature, the local information of an MHI is also important 

and can be used as features. To obtain the local information of an MHI, MHI is divided 

into 9 blocks as depicted in Figure 2-6 (a). Each block covers a specified range of area 

as shown in Figure 2-6 (b) and the major orientations of blocks are used as features for 

behavior recognition. 
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2.5 Behavior matching process 

There are many methods for matching behavior, such as artificial neural network 

and Euclidean distance. In this thesis, the squared Euclidean distance is used to find the 

most similar predefined behavior from the behavior database for input frames. The 

extracted feature set is compared to all of the feature sets in the behavior database to 

find the most similar one. If the difference between the extracted feature set and the 

most similar feature set from the behavior database is less than a given threshold value, 

we can say the behavior corresponding to the most similar feature set appears in the 

input frames. Otherwise, the behavior is not detected and the object’s motion in the 

input frames is undefined. 
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Chapter 3 Fast MHI Approach 

 The MHI approach is an easy method to recognize behaviors for video objects, but 

it takes too much computing time to extract features as Chapter 2 described. For a 

behavior database contains K predefined behaviors with various lengths of motion time, 

to recognize the behavior of input frames, we must generate several MHIs of various 

deltas. Let the behavior database consists of a delta set Δ= {δ1, δ2, δ3, … , δL}. To 

recognize whether the monitored screen presents a predefined behavior or not, we need 

to generate L MHIs for different deltas. That is, for every input frame, we have to 

execute the Object Extraction process and History Matrix Updating processes once, and 

the MHI generation and Features Extraction processes L times. 

To reduce the computational complexity of the MHI approach and Chen’s method, 

a fast MHI approach is proposed in this thesis. The proposed approach uses nine block 

orientations, which is the same as that used in Chen’s method, to simplify the feature 

extraction process and remain a good recognition performance. To reduce the time 

complexity in advance, three processes are proposed and presented in the following 

sections. 

3.1 Storing multiple sets of features for a predefined behavior 

 Since the sustained time of different types of behaviors is diverse, numbers of 

frames in MHIs for different behaviors are also different. That means different 

behaviors may have different deltas in constructing their MHIs, and each predefined 

behavior has its own delta and a set of features must be stored in the behavior database 
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for the delta. Let the delta of a predefined behavior be δb. The set of features stored in 

the behavior database for the behavior is generated using an MHI containing δb frames. 

To recognize whether the input frame appears a predefined behavior, we must generate 

multiple MHIs of all possible deltas in ∆, extract multiple sets of features for all MHIs, 

and compare the extracted features to those of the predefined behaviors. This process is 

very time consuming. To solve this problem, we choose to store multiple sets of features 

for a predefined behavior. For a predefined behavior with the smallest delta, say δ1, only 

one set of features is stored and for a behavior with larger delta, say δi, 2 ≤ i ≤ L, i sets 

of features must be stored in the behavior database. To meet our requirement, we 

redesign the behavior database to store multiple sets of features for predefined behaviors. 

Table 3-1 shows the design of our behavior database. 

Table 3-1: The design of Behavior database 

Delta 

 

Behavior 

δ1 δ2 δ3 … δL 

Features LF Features LF Features LF
 

Features LF

B1 F
B
δ

1

1 T        

B2 F
B
δ

2

1 F F
B
δ

2

2 T      

B3 F
B
δ

3

1 F F
B
δ

3

2 T    

B4 F
B
δ

4

1 F F
B
δ

4

2 F F
B
δ

4

3 T    

…

         

BK F
B
δ

K

1 F F
B
δ

K

2 F F
B
δ

K

3 F … F
B
δ

K

L T

 From Table 3-1, we can see that we have multiple behaviors defined in the 

behavior database and all behaviors are sorted according to their deltas. For a behavior 
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with smaller delta, fewer sets of features are stored. Otherwise more sets of features 

must be recorded. Where LF means the last flag and is used to recognize if this is the 

original delta of a behavior. In other words, the feature set with the value ‘T’ of LF is 

the really correct delta in recognizing a behavior. Otherwise the feature set of other 

deltas are just used to reduce unrequired calculation and LF is set as ‘F’. Here, ܨఋ೔
஻ೕ for 

1 ≤ i ≤ L and 1 ≤ j ≤ K is the feature set for behavior Bj and delta=δi. In our approach, 

only the local information of MHI is used. That is, we use nine block orientations On,  

1 ≤ n ≤ 9 for an MHI as features. 

Let ܨఋ೔
ఛ

 be the feature set extracted from the input frames at time point with 

delta=δi. The procedure of behavior recognition using multiple sets of features for the 

input frames is described in Figure 3-1.  

 

Figure 3-1: The algorithm of behavior recognition 

using multiple sets of features for a predefined behavior. 

Set  dist[j] = 0,  1 ≤ j ≤ K 

Set  done[j] = false,  1 ≤ j ≤ K 

for  i = 1 to L { 

obtain ܨఋ೔
ఛ

 

for  j = 1 to K { 

if ( done[j] = false ) 

   dist[j] = D(ܨఋ೔
ఛ

ఋ೔ܨ ,
஻ೕ) 

   if ( (dist[j] > THR) or (ܨܮఋ೔
஻ೕ= true) ) 

    done[j] = true 
} 

    } 

Set  id = 1 

for i = 2 to K 

   if ( dist[i] < dist[id] ) 

  id = i 

if ( dist[id] > THR ) 

   id = 0 
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Where D(ܨఋ೔
ఛ

ఋ೔ܨ ,
஻ೕ) is the squared Euclidean distance function, and THR is a 

threshold value which should be determined experimentally. As shown in Figure 3-1, 

the procedure will find the id of behavior which has the less distance to features 

extracted from input frames. If no behavior is recognized, the value of id will be 0. 

3.2 Partial distance calculation 

As mentioned above, the squared Euclidean distance is used to calculate the 

distance between two feature sets. For two sets of features F1 and F2 which are 

generated by the same delta from behavior 1 and behavior 2 respectively, the definition 

of squared Euclidean distance D(F1, F2) is given below. Where the Blk is denoted the 

block number in an MHI. 

,ଵܨሺܦ  ଶሻܨ 	ൌ 	∑ ሺܱ஻௟௞
ଵ , ܱ஻௟௞

ଶ ሻଶଽ
஻௟௞ୀଵ          (3-1) 

Using the Euclidean distance to evaluate the distance between two features, all 

features of the input MHI must be determined. In many cases, we don’t have to fully 

compute the squared Euclidean distance to know if a predefined behavior is not the 

behavior of the input frames. For example, if the behavior of input motion frames is not 

predefined in the behavior database, the generated feature set of input motion frames 

must be different from any one feature set in the behavior database. In other words, the 

feature in a feature set which is generated from the input motion frames may not be the 

same to any one feature in the behavior database. According to this observation, a 

partial distance calculation method is proposed. The partial distance calculation method 

is to divide squared Euclidean distance calculation process into nine separated steps in 

terms of blocks calculation order. Let Di(F1, F2) is the i th partial distance for feature 
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sets F1and F2 . The definition of Di(F1, F2) is given below. 

,ଵܨ௜ሺܦ  ଶሻܨ 	ൌ 	 ሺ ௜ܱ
ଵ, ௜ܱ

ଶሻଶ           (3-2) 

From equation (3-2), we can see that the D(F1, F2) can be computed using the 

following equation. 

,ଵܨሺܦ  ଶሻܨ 	ൌ 	∑ ௜ሺܦ ௜ܱ
ଵ, ௜ܱ

ଶሻଶଽ
௜ୀଵ          (3-3) 

By dividing the squared Euclidean distance into nine steps, we can check the 

accumulated distance after each partial distance is computed to see whether current 

accumulated distance is already excess THR or not. If current accumulated distance is 

excess THR, the distance computation process can be terminated earlier.  

 

Figure 3-2: The algorithm of behavior recognition 

using partial distance calculation and multiple sets of features. 

Set  dist[j] = 0,  1 ≤ j ≤ K 

Set  done[j] = false,  1 ≤ j ≤ K 

for  i = 1 to L { 

for  Blk = 1 to 9 { 

obtain ܱ஻௟௞
ఛ

 from ܫܪܯఋ೔
ఛ

 

Set terminate = true 

for  j = 1 to K 

if ( (done[j] = false) and (terminate=false) ){ 

    dist[j] += DBlk( ஻ܱ௟௞
஻ೕ , ܱ஻௟௞

ఛ
) 

    if ( (dist[j] > THR) or (ܨܮఋ೔
஻ೕ= true) ){ 

done[j] = true 

} else terminate = false 

} 

if (terminate = true ){ 

id = 0 

return 

} 
} 

    } 
Set  id = 1 

for i = 2 to K 

   if ( dist[i] < dist[id] ) 

  id = i 

if ( dist[id] > THR ) 

   id = 0 
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To further reduce the computational complexity, the feature set for the input frames 

should not be evaluated at a time. That is, a feature of the input frames must be 

evaluated when we need it. In such a case, if the feature set of the input frames is quite 

different from those stored in the behavior database, a lot of computations can be 

avoided. Figure 3-2 gives the procedure for applying the partial distance calculation 

method to behavior recognition.  

3.3 Changing distance calculated order 

In the process of distance calculation, we need to compute square sum for nine 

blocks. The calculating order of nine blocks is {1, 2, 3, 4, 6, 7, 8, 9, 5}. The purpose of 

partial distance calculation is to early terminate the computation of a distance. 

Empirically, we found that the distance contributed by every block are quite difference. 

That is, the calculating order of nine blocks can be changed according to the degree of 

distance contribution from all blocks. 

Equation 3-3 gives the definition of distance contribution calculation, where ADBlk 

is the average distance of block, Un is the number of unknown behavior MHIs, K is the 

number of the predefined behaviors, ܱ஻௟௞
஻  is the block feature of someone behavior in 

the behavior database, and ܱ஻௟௞
௎௡  is the block feature of unknown behavior MHIs.  

 Aܦ஻௟௞ሺܨଵ, ଶሻܨ 	ൌ 	∑ ∑ ሺܱ஻௟௞
஻ , ܱ஻௟௞

௎௡ ሻଶ௄
஻ୀଵ௎௡  Blk ≤ 9   (3-3) ≥ 1 , ܭ	/	

Figure 3-3 gives an experimental result to show the distance contribution for every 

block, where the distance contribution of a block is evaluated by summing the distances 

between features of the block from predefined behaviors and our testing MHIs (Figure 

4-43). 
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Figure 3-3: Average distances for nine blocks. 

From Figure 3-3, we may find that blocks 3 and 6 always contribute more distance 

and blocks 7, 8, 9 contribute less distances. Thus, the distance calculated order is 

changed to {6, 3, 2, 1, 4, 7, 9, 8, 5} for improving the efficiency of partial distance 

calculation. 
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After the MHIs are generated, the feature sets can be extracted from the generated 

MHIs as patterns and the extracted feature sets are stored in the behavior database. In 

the experiment, there are 40 sets of features calculated by the equations from 2-2 to 2-5, 

2-11, and 2-12, and these features should be stored in the behavior database. Table 4-1 

and Table 4-2 list these orientation features for Δ={12, 16} and four types behaviors 

from four directions performed by the person 1 and person 2, respectively. 

Table 4-1: The feature sets for behaviors performed by the person 1. 

Delta 

Orientation   Block 
(degree) 

Behavior 

1 2 3 4 5 6 7 8 9 

12 

Falling 

Front 60.5 70.2 82.0 71.6 52.9 101.2 22.6  13.0  35.8 

Back 83.6 71.3 158.2 87.5 52.4 79.8 41.9  16.2  21.3 

Lift 141.0 32.0 44.8 59.9 38.9 41.7 24.3  26.2  30.3 

Right 32.2 21.2 0.0 34.4 29.1 41.5 43.4  20.3  4.8 

Hunker 

Front 148.5 149.2 155.5 159.2 160.6 164.8 164.3  163.5  155.8 

Back 87.0 56.3 89.3 74.3 47.9 83.1 35.4  6.6  9.7 

Lift 52.7 54.6 182.4 43.3 50.2 108.9 34.8  22.3  29.4 

Right 35.0 18.9 18.3 51.0 27.6 19.1 93.5  32.7  16.7 

Sitting 

Front 49.7 38.2 82.5 46.3 32.8 64.7 27.8  17.7  27.6 

Back 102.5 40.5 107.8 34.1 32.4 48.4 67.2  7.7  16.1 

Lift 44.3 45.5 17.4 51.9 32.5 4.8 94.7  22.8  32.2 

Right 155.6 58.6 54.3 7.8 33.7 30.8 24.0  35.6  92.6 

Stand 

Front 14.8 13.6 22.8 22.9 15.6 5.4 49.0  14.2  16.4 

Back 22.1 14.5 74.4 34.8 25.9 29.4 41.1  34.9  45.6 

Lift 58.3 18.6 0.0 32.6 31.8 61.0 103.7  5.8  17.3 

Right 0.0 13.5 27.5 77.9 28.6 19.1 47.1  16.5  70.9 

16 Stand 

Front 14.8 13.6 22.5 23.8 15.9 5.3 50.2  14.4  16.4 

Back 22.1 14.5 74.4 36.6 27.4 31.0 50.5  36.0  45.8 

Lift 57.6 22.3 0.0 31.1 36.4 85.0 97.9  6.9  21.8 

Right 96.8 21.6 26.9 99.3 36.8 16.6 59.3  16.6  57.1 
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Table 4-2: The feature sets for behaviors performed by the person 2. 

Delta 
Orientation    Block 
(degree) 

Behavior 

1 2 3 4 5 6 7 8 9 

12 

Falling 

Front 95.1  77.1 140.2 83.2 56.7 79.0 34.9  21.4  24.8 

Back 0.0  67.7 105.0 59.0 50.2 60.8 124.7  23.3  18.9 

Lift 0.0  27.3 33.4 49.0 35.8 19.7 26.5  37.5  62.9 

Right 43.2  51.3 0.0 34.6 37.0 37.1 47.3  36.4  34.6 

Hunker 

Front 43.9  42.5 88.8 58.0 43.6 97.7 62.0  11.8  31.6 

Back 30.8  33.8 68.2 50.8 38.2 71.8 58.9  11.2  47.4 

Lift 59.5  53.9 133.4 39.6 47.9 99.7 43.9  4.4  32.1 

Right 129.2  67.0 64.1 80.5 42.6 29.0 39.0  3.7  19.7 

Sitting 

Front 68.9  43.9 86.3 32.5 30.3 53.3 19.4  14.6  22.5 

Back 125.5  21.7 107.2 27.1 16.1 8.9 28.1  2.1  9.8 

Lift 53.7  41.3 107.5 52.2 34.6 23.3 103.3  18.5  6.0 

Right 12.0  25.0 35.9 4.7 26.6 52.2 10.1  5.3  60.3 

Stand 

Front 19.9  7.4 14.1 20.1 15.3 4.1 65.2  22.3  11.5 

Back 53.3  19.1 34.0 43.7 20.0 2.3 81.1  11.4  4.8 

Lift 14.9  85.4 85.3 6.6 31.0 66.1 10.1  13.0  50.8 

Right 145.1  33.0 32.5 54.2 29.9 4.4 21.2  35.7  8.6 

16 Stand 

Front 19.5  7.3 14.1 19.6 17.1 8.3 63.7  26.6  19.3 

Back 33.2  20.4 28.9 65.1 24.8 1.8 90.4  23.0  11.6 

Lift 21.4  99.4 0.0 8.1 31.8 64.3 7.5  19.3  10.9 

Right 45.5  35.2 28.0 56.2 34.1 3.9 43.1  38.9  7.3 

In the testing phase, 146 consecutive frames with the size of 704x480 pixels are 

tested in both Chen’s method and the proposed fast MHI approach to evaluate the 

behavior recognition result and the computing time. The testing frames  contain four 

predefined behaviors and some undefined behaviors which are performed by the first 

person are taken from the front side. Figure 4-43 lists the object masks of the testing 

frames. 
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In the recognition process, we define that a behavior is recognized only if the 

behavior is detected from three continuous generated MHIs. Moreover, if one behavior 

of the object is recognized, the next behavior of the object must be any behaviors but 

this current recognized one. For reducing the complexity of computation more, the 

recognition process will not detect the behavior which is the same to the previous one 

for a period of δ1/2 frames, where the δ1 is the smallest delta in the behavior database. In 

the original Chen’s approach, 72 strengths and nine local orientations are used as a 

pattern and an error back-propagation neural network is used to recognize the behavior 

of a video object. In our experiment, the same behavior recognition method as used in 

our proposed method is also used in the modified Chen’s approach for keeping the 

experimental result independent of the behavior recognition method. In our proposed 

method, only nine orientation features are adopted for reducing the higher time 

complexity, and the method described in Chapter 3 is used to recognize behaviors of the 

video object. The threshold value THR is set as 49 degrees in the experiment and which 

value is determined by the best accuracy of our experiment. The experimental 

environment for this experiment is listed in the following Table. 

Table 4-3: The experimental equipment. 

Computer Type Desk-top computer 

CPU AMD Phenom 9550 Quad-Core 2.20 GHz 

RAM 2 GB 

Capture Device Panasonic SDR-H250GT 

Development Language Microsoft Visual C++ 2008 Express 
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Table 4-4 lists the result of behavior recognition in using the modified Chen’s 

method and our proposed method, where the Meaningless is denoted the behaviors 

which are not predefined in the behavior database or some petty actions between 

previous behavior and next behavior. From Table 4-4, we can find that both methods 

have the same recognition result. That is, in this experiment, nine local information 

perform very well. However, if a large amount of behaviors were defined in the 

behavior database, the result may be different. 

Table 4-4: The result of behavior recognition  

in using the modified Chen’s method and our proposed method. 

Behavior 
Occurrence 

times 

Times for behaviors are recognized 

The modified  

Chen’s Method 
Fast MHI Method 

Sitting down 1 1 1 

Standing up 4 3 3 

Hunkering 1 0 0 

Falling 2 1 1 

Meaningless 4 0 0 

 Table 4-5 gives the average execution time of 146 input motion frames for two 

level deltas (Δ1) and three level deltas (Δ2). From Table 4-5, it is very easy to notice that 

the proposed method can effective reduce the computation time than Chen’s method. It 

is obviously to see that the improvement is mainly from using the multiple sets of 

features for a predefined behavior and the partial distance calculation. The principle of 
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storing multiple sets of features is to reduce the unnecessary computations on 

generating MHIs of higher delta. The more different values of deltas appear in the 

behavior database, the more computations could be reduced. 

Table 4-5: The average execution time for  

the modified Chen’s method and our proposed method. 

Approach 

Average execution time 

(ms) 

Δ1={12,16} Δ2={8,12,16}

The modified Chen’s method 71.8 142.7 

The modified Chen’s method 
without using MGMH features 63.6 84.2 

The proposed method with 
multiple sets of features 41.8 58.4 

The proposed method with 
multiple sets of features and partial distance calculation 28.0 49.1 

The proposed method with 
full function 27.7 48.8 

In the experiment, there are only two kinds of delta sets (Δ1 andΔ2) presented in the 

behavior database, and the comparison between feature sets from the behavior database 

and the input frames will get more opportunity to be reduced if there are more elements 

in the delta set in the behavior database. Comparing to the modified Chen’s method, the 

proposed method can reduce about 61% of computation time for Δ1, and 65.8% of 

computation time for Δ2. 
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Chapter 5 Conclusions 

 In this thesis, a new fast MHI approach is proposed to reduce the time complexity 

of MHI approach by storing multiple sets of features for a predefined behavior to 

decrease the MHI generation time, using the partial distance calculation skill to reduce 

the distance calculation time, and changing the calculated order of features to enhance 

the efficiency of partial distance calculation method. Through the proposed method, the 

time complexity of the MHI approach can be effectively reduced. To evaluate the 

proposed method, a set of predefined behaviors are first captured and the features for 

these behaviors are extracted and stored in the behavior database. Then, a set of testing 

frames containing defined behaviors and undefined behaviors are used to test our 

proposed method and the modified Chen’s method in terms of the recognition result and 

the computing time. Comparing to the modified Chen’s method, our proposed method 

can reduce about 61% of computing time for two levels delta set and 65.8% for three 

levels delta set. From the experimental results, we can also find that the proposed 

method can get better performance in terms of the computing time when more deltas 

appears in the behavior database. 
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