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摘        要 

 
 
 

本論文提出一新的改良式基因演算法（KGA），此演算法透過由傳統

基因演算法的結果搭配屬性的辨識去收集知識，並利用知識引導 KGA的

過程與交配時基因優良度的評估。此外，為了避免因為知識的應用而使

演算過程容易落入區域最佳解，本研究利用突變的方式做區域搜尋，並

在結果確定落入區域最佳解時，重新置換母體及替換舊有知識，藉由這

些改變來使得本演算法可以同時兼顧集中性和多樣性。最後透過實驗的

結果證實，本演算法確實是穩定的且可以找出不錯的排程，而知識的應

用也可有效的提供引導的資訊。 

 

關鍵字：零工式排程問題、改良式基因演算法、知識 
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ABSTRACT 

 
 
 

This study presents a novel use of attribution for the extraction of 

knowledge from job shop scheduling problem. Our algorithm improves the 

traditional GA and using knowledge to keep the quality of solution. Based on 

the knowledge, the search space will be leaded to a better search space. In 

addition, this study uses mutation to do local search and refresh the 

knowledge and population when the solution fall into local minimum. Based 

on those methods, our algorithm will have the intensification and 

diversification. Those can make the algorithm have good convergence and 

leap for the search space to find the better solution. The experiment results 

show that algorithm steadily and can find the approximate optimal solution. 

And the knowledge is useful in provide the gene selection information. 
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Chapter 1 Introduction 

Scheduling problems exist everywhere in real-world circumstance, 

especially in the flexible manufacturing world. Many people pay close 

attention to it because poor scheduling can lead to higher cost for 

manufacturers and consequently higher prices for customer. Therefore, if we 

want to have the better efficiency, we must have a good schedule to promote 

the efficiency and reduce the time in the manufacturing process. Nevertheless, 

scheduling problems are categorized into different groups in the different 

machine environment (e.g., single machine problems, parallel machine 

problems, job shop problems, etc,). In those groups, job shop problem (JSP) 

emphasizes the order of job in the every machine. In the other word, it 

considers the order of every operator of job but not prescribes which machine 

is the first machine for the job. As a result, JSP is more complicated than other 

scheduling problem. Therefore, this study has focused on the JSP problem. 

 JSP is among the hardest combinational optimization problem [21]. Most 

of the researches used different approaches to solved JSP such as: Tabu search 

[8, 16], simulated annealing [22, 26], ant colony system [1], neural network 

algorithm [3], genetic algorithm (GA) [7, 9, 28, 18], and others. GA-based 

approach was used to solve JSP problem considerably in recent years among 

these studying. Cheng, Gen, and Tsujimura [24] have given a detailed sort 

survey on papers using GA to solve classical JSP in Part Ⅰsurvey. 

Nevertheless, using traditional GA can’t give consideration convergence rate, 

quality of solution and stability of search process. On the other hand, this 
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algorithm can’t balance intensification and diversification. Ignore the 

intensification will spend much time to search. And disregard the 

diversification will fall into local minimum easily. So many researches tried 

modify GA with other algorithm. Cheng [25] discuss various hybrid GA to 

solve JSP.  

In recent years, many researches wanted to improve intensification or 

diversification. Mattfeld and Bierwirth [5] used a heuristic reduction of search 

space which can help GA to find better solution in a shorter computation time. 

Goncalves, Mendes, and Resende [15] constructed the scheduling to generate 

parameterized active schedules and used a local search heuristic to improve 

the solution in evolutionary process of GA. To sum up, there studies focused 

on improving the search space. Therefore, better solutions could be expected 

but the quality of solutions could not be guarded. Watanabe, Ida and Gen [20] 

use GA with modified crossover operator for JSP problem. It made use of 

random number to decide what gene must be reserved for children 

chromosome. If the offspring do not conform to constrain the JSP problem, it 

will be regulate by some rules. This paper changed the traditional crossover 

operator and considered influence of each gene. Nevertheless, using the 

random number to decide which gene can be retained to offspring did not 

exclude random effect. 

In order to keep the quality of solutions, some studies used the better 

chromosome to replace the bad chromosome. This method is accomplished by 

first coping some of the best individuals from each generation to the next, in 

what is called an elitist strategy [9]. Chang, Hsieh and Hsiao [23] reserved 

some better chromosomes and replaced some bad chromosomes in each 
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generation. Those methods supposed that if there is a better population, it will 

the easy to produce the better offspring in crossover operator. However, it was 

not exactly so and it may easy to fall into local minimum. For this reason, we 

propose the idea that if we can evaluate the fitness for genes and choose the 

better gene to generate the offspring which may lead to a better solution. And 

if reserving the better chromosomes can help the quality of solution, those 

better chromosomes may be have useful information for finding the better 

solution. 

Based on those ideas, we will collect some best solutions by GA to sort 

some knowledge and use it to evaluate the fitness for gene. And then make 

use of concluded result to design the suitable crossover operator for JSP 

problem. Hope to use this idea to speed up the convergence and improve the 

solution for JSP problem. Beside, we use mutation to do the local search, 

hope this can keep the diversification and avoid intensification overly. We 

will describe the design and the logic behind this method. And use the 

experiment to demonstrate the feasibility. This research is a new attempt and 

which can apply to other optimization problem. Therefore, it is a very 

important problem and merit discussion about it. 

In this paper, we present a new knowledge-based genetic algorithm (KGA) 

for solving the job shop scheduling problem. The paper will be divided into 

the following sections. Section 2 describes the related work of the problem. 

Section 3 will describe the flow of the knowledge-based GA. Section 4 shows 

the several experiment results in the comparison to those of existing GA. 

Section 5 makes conclude this paper.  
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Chapter 2 Related works 

2.1 Job shop scheduling problem 

 JSP problem has been described as follows [6]: there are m different jobs 

and n different machines to be scheduled. Each job is composed of a set of 

operation and the operation order on each machine is prespecified. The 

required machine and the fixed processing time characterize each operation. 

There are several constraints on jobs and machines: 

l A job does not visit the same machine twice. 

l There are no precedence constraints among the operations of different 

jobs. 

l Operations cannot be interrupted. 

l Each machine can process only one job at a time. 

l Neither release times nor due dates are specified. 

A schedule is an allocation of the operations to time intervals on the 

machines. According to the allocated operation sequences in a schedule, the 

time required to complete all jobs is called makespan of the schedule. Table 

2.1 shows a 3×3 JSP problem and concluded operations, job number, machine 

number, process time. For example, when we observe J1 and O1, it means 

that operation 1 of job 1 be arranged for machine 2 (M2) and spend 2 time 

units.  
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Table 2.1 JSP problem 

 Operations 

Job O1 O2 O3 

J1 M2(2) M3(3) M1(7) 

J2 M3(1) M1(9) M2(3) 

J3 M1(3) M2(8) M3(5) 
 

2.2 Genetic algorithm 

 Genetic algorithm is search algorithm developed to explain and simulate 

the mechanisms of natural systems. In GA applications, variables of the 

solution are encoded into a structures string that presents a list of genes. A 

fitness function is also required, which assigns a figure of merit to each 

encoded solution. During the run, parents must be selected for reproduction, 

and recombined or mutated to generate offspring. The GA uses a measure of 

fitness of individual chromosome to carry out reproduction. As reproduction 

takes place, the crossover operator exchanges parts of two single 

chromosomes and the mutation operator changes the gene value in some 

randomly chosen location of the chromosome. As a result, after a number of 

successive reproductions, the less fit chromosomes become extinct, while 

those best able to survive gradually come to dominate the population.  

 

2.2.1 Crossover operator 

 Crossover operator was used to recombine parents and generate offspring. 

There are many studies on the design of crossover operator. Partially Mapped 

Crossover (PMX) copies a section of genes from one parent and the rest by 
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position-wise exchanging [10]. Order crossover (OX) can be viewed as a kind 

of variation of PMX that used a different repairing procedure [17]. And, 

Order-based Crossover (OC2) is a slight variation of position-based crossover 

in that the order of symbols in the selected position in one parent is imposed 

on the corresponding ones in the other parent [12]. 

 

2.2.2 Mutation operator 

 Some mutation operators have been proposed for permutation 

representation. Inversion mutation selects two positions, within a 

chromosome at random and then inverts the substring between selects two 

positions. Shift mutation first chooses a gene randomly and shifts it to a 

random position of right or left from the gene’s position [19]. 

 

2.3 GA-based JSP algorithm 

 The JSP problem has captured the interest of a significant number of 

researches and a lot of literature has been published, but no efficient solution 

algorithm has found yet for solving it to optimality in polynomial time. For 

this reason, there are many researches use the GA or hybrid GA to solve the 

JSP problem. For example, Kennedy provided the offspring will pass on its 

traits acquired during this local optimization to future offspring. Giffler and 

Thompson used to deduce a schedule from the encoding of priority 

dispatching rules. Roughly is to combine the GA with beam search technique 

in JSP problem [24]. Those algorithms must be used in executing GA. So 

encoding the chromosome, decoding chromosome and representing the 
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chromosome must be understood.  
 

2.3.1 Encoding of chromosome 

 Using genetic algorithm to solve problem, solutions must be encoded in a 

format that allows for the operations of crossover and mutation. This research 

uses Syswerda’s [13] list of order operations representation as the gene model 

for JSP problem. The 3×3 JSP is encoded into a 9 integer array. For example, 

a solution might be the sequence: {1,3,3,2,1,2,1,2,3}. This sequence is called 

a chromosome. Each element in the array corresponds to a job. Successive 

references to a job in the array imply the next available operation for that job. 

Fig. 2.1 shows the schedule ordering from the previous solution sequence. 

 

Fig. 2.1 Job shop scheduling gene 

 

2.3.2 Decoding of chromosome 

 Every chromosome represents a schedule. We must decode a 

chromosome to its corresponding schedule to evaluate the makespan. The 

schedule with the shortest makespan is regarded as the final solution for the 

given JSP problem. The makespan was calculates by order of operations for 

chromosome. For example, ojim denote the ith operation of job j on machine m 

[24]. The chromosome shown in Fig 2.1can translated into a unique list of 

ordered operations of {o112, o123, o131, o213, o221, o232, o331, o322, o333}. Operation 

o112 has the highest priority and is scheduled first, then o123, and so on.   The 

1 1 2 1 2 2 3 3 3 Operation 

1 3 3 2 1 2 1 2 3 Job 
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resulting active schedule is shown in Fig 2.2. 

 

 

Fig. 2.2 Decoded active schedule 
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Chapter 3 Research approach 
 Our algorithm was modified GA’s deficiency. We use some better 

solutions (chromosomes) to collect knowledge and designing a eugenic 

crossover. However, those better solutions just bring the limited information. 

We can understand the machine number and processing time for this operation, 

but we can not collect the integrate information. Therefore, we design the 

operation table to classify those operations before collecting knowledge. Use 

knowledge to decide the fitness of gene in crossover operator and adjust the 

chromosome.  

 

3.1 Data preparation 

 Hsieh and Hsiao [23] reserved some better chromosomes and replace 

some bad chromosome in each generation and improve the solution of GA. 

According to this result, we can assume that those better chromosomes may 

be included some useful information for improve solution. But GA can not 

demonstrate repeat-ability or provide an explanation of how a solution is 

developed. For this reason, we can’t induce information from the solutions of 

GA. Therefore, we will use the method which was brought up by Koonce and 

Tsai [6]. This method used attributions to induce information from the 

solution of GA.  

 

3.1.1 Attribution 

Koonce and Tsai [6] proposed that the JSP problem could be stored in 

another relation with the following structure: {Job, Operation, Machine, and 
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Process}. Therefore, they used five attributions to do hierarchies which were 

related to the JSP problem. Every attribution had classes itself. In this study, 

we use the attribution to determine the gene in each gene position. This idea 

could not decide the priority of gene. So we will use four of those attributions 

to make the attribution table be used in the next research phase. The following 

classification hierarchies are based on the 3×3 JSP problem and four 

attributions is listed as following: 

(1) Operation: The Operation attribute is an ordinal variable representing the 

sequence of the operation in the job. It was divided into three classes if 

operation would be adequate for induction. Operation 1 was classified as 

“first”, operation 2 was classified as “middle”, and operation 3 was 

classified as “later”. 

(2) Process time: Process represent the time for processing for that particular 

operation. It was classified three classes: the first 1/3 as “short”, the second 

1/3 as “middle”, and the third as “long”. For the 3×3 cases studied, 

processing times ranged from 1 to 9 time units. A simple division of time 

is when time less than 3 is “short”; long than 3 and short than 6 is 

“middle”; and long than 6 is “long”. 

(3) Remaining process time: Remaining process represents the cumulative 

processing time for all subsequent operations for that job. Because it’s 

range is domain, so we will find the maximum remaining process time and 

use maximum remaining process time to divide into three classes: the first 

1/3 as “short”, the second 1/3 as “middle”, and the third as “long”. Giving 

an example, if the maximum remaining process time is 24, the “short”, 

“middle” and “long” with bounds of 7, 14, and 24. 
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(4) Machine loading: Machine loading is a property of the machine on which 

an operation is scheduled. It was divided into two classes: the first as 

“light”, and the rest as “heavy”. If the value below average, it is classified 

as “light”. If the value below average, it is over average as “heavy”. Table 

3.1 shows the attribution table related to the classes. 

 

Table 3.1 Classes substitutions 

Value  
Attributes Classes (Code) 

first 1/3 second 1/3 third 1/3 Operation 
first（1） middle（2） later（3） 

first 1/3 second 1/3 third 1/3 Process time 
short（1） middle（2） long（3） 

first 1/3 second 1/3 third 1/3 Remaining 
process time short（1） middle（2） long（3） 

less than average others  Machine loading 
light（1） heavy（2）  

 

3.1.2 Operations Table 

 After the attribution table is set, the operation of a job will be coded using 

the combination of attribute and recorded in operation table. Table 3.2 shows 

the test case in the operations table. For example, Table 2.1 shows that 

operation 1 of job 1 is the first operation, so operation attribute belong to first 

1/3 and be coded 1. And this operation takes 2 time units. While the 

processing times ranges from 1 to 9 time units, so it belongs to first 1/3 and be 

coded 1. For operation 1, remain processing time was the sum of the time 

units from operation 2 and operation 3. In this test case, the longest remain 
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processing time is 13, so it belongs to third 1/3 and be coded 3 (see table 3.1). 

The average of machine loading is 13 and all operations be assigned to 

machine 2 takes 13 time units. So machine loading attribution belongs to the 

heavy class and be coded 2 (see table 3.1). 

 

Table 3.2 Example of operations table 

(Job, 
O

peration) 

operation 

Process tim
e 

R
em

ain 
processing 

tim
e 

M
achine 

loading 

(Job, 
O

peration) 

operation 

Process tim
e 

R
em

ain 
processing 

tim
e 

M
achine 

loading 

(1,1) 1 1 3 2 (2,3) 3 1 1 2 

(1,2) 2 1 2 1 (3,1) 1 1 3 2 

(1,3) 3 3 1 2 (3,2) 2 3 2 2 

(2,1) 1 1 3 1 (3,3) 3 2 1 1 

(2,2) 2 3 1 2      

 

3.2 Collect knowledge 

 Better solutions (chromosome) may be have some information and can 

help us to find optimal solution. Therefore, we could take advantage of those 

better solutions to collect knowledge. However, those solutions just tell me 

which operation could be sort in this position. We could not understand the 

influence factor on gene position. So we used the operations table to analyze 

those operations in each position. Every operation was defined by four 

attributions and has its attribute value. Attribute combination combined those 
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attribute value to determine the difference of operation. We use that to decide 

which operation fits better in each position. If this attribution combination in 

this position has higher occurrence times and called fitness value or count. 

Those fitness values were collected by some better solution. If it had higher 

value, it meant this gene in this position were discovered in better solution 

sever times. So we will use this fitness value to evaluate fittest-gene in each 

gene position and those fitness values in each position were called the 

knowledge. Next, we will use an example to explain it. 

Table 3.3 shows the attribute combination in the gene position. We 

suppose there are three better solutions such as {2, 1, 3, 1, 1, 3, 3, 2, 2}, {1, 3, 

2, 3, 1, 1, 2, 2, 3}, and {1, 3, 2, 1, 2, 2, 1, 3, 3}. The gene 2, 1, and 1 are the 

first gene of three solutions. Those mean the operation 1 of job 2 and 

operation 1 of job 1. According to the Table 3.2, we can know the attribute 

combinations are (1, 1, 3, 1), (1, 1, 3, 2), and (1, 1, 3, 2). Therefore, there are 

two kinds of attribute combinations in gene position 1 (see Table 3.3). The 

occurrence time (count) of (1, 1, 3, 1) is 1 and of (1, 1, 3, 2) is 2. We used this 

method to collect knowledge and those will be used in the crossover operator. 

Based on the position and attribute combination of gene, we could find the 

count. The count was used to evaluate fitness of gene. If the count is higher, 

the gene had higher fitness value and it was reserved in child.  
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Table 3.3 Example of attribute combination in the gene position 

Gene 
position 

Attribute 
combination 

Count Gene 
position 

Attribute 
combination 

Count 

1131 1 2322 1 
1 

1132 2 3312 1 

2 1132 3 

6 

3112 1 

1132 1 3211 1 
3 

1131 2 2312 1 

2121 2 

7 

3312 1 
4 

2322 1 2312 1 

3312 1 3112 1 

2121 1 

8 

2322 1 

3112 1 
5 

2312 1 
9 

3211 2 

 

3.3 Designing crossover operator 

 “Keep the better gene in the chromosome” is the important notion in the 

crossover operator. Therefore, we use the knowledge which collected from 

some better solutions to decide which gene is better and can be retained. In 

other words, use operations table to decide the attribute combination of 

operation from parent chromosome. And then using those attribute 

combination and gene position to find the count. This count is the fitness 

value of the gene. And we must choose one gene of parent chromosomes 

which has higher fitness value in the same position. Based on this method to 

retain the better gene, and hope it to improve the quality of offspring. If the 

solution does not conform to JSP problem, we use the fitness value (count) to 

adjust it. The adjusting method is the job which does not have enough 



 15 

operations. The targeted replaced operation is the operation with lowest 

fitness value. 
 
3.3.1 Eugenic crossover 

 This crossover was based on the knowledge to decide which gene can be 

retained to the child chromosome and was called eugenic crossover. Eugenic 

crossover is accomplished through the following steps, and Fig 3.1 

demonstrates an example: 

1. Choose two chromosomes, named parent A and parent B. 

2. Use the operations table to determine the attribute combination for parent 

chromosome. If the attribute combination in this position was never 

existed before, the count will be coded 0. 

3. Using the attribute combination and gene position to retrieve the count. 

4. Choose one gene from parent which has higher count in the same position. 

If the count is the same, randomly choose one gene from parent.  

 

Fig. 3.1 Example of eugenic crossover 

3 1 2 1 1 3 2 2 3 Parent A 

2 3 2 2 1 1 1 1 2 Count 

2 1 3 2 1 1 3 2 3 Parent B 

1 3 1 0 1 1 0 1 2 Count 

3 1 2 1 1 3 2 2 3 Child 

2 3 1 2 1 1 1 1 2 Count 

3 1 2 1 1 3 2 2 3 Child 
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3.3.2 Adjust child 

 If the child does not conform to JSP problem, we will use the count to 

adjust it. The adjust phase is accomplished through the following steps, and 

Fig. 3.2 demonstrates an example: 

1. The child was produced by crossover and not conformed to JSP problem.  

2. Sort the child gene by count and record the original gene position. 

3. Select the job which has more than n operations and have the lower count 

4. Replace the job which has less operation. 

5. According the position to sort the gene and produce child. 

Fig. 3.2 shows the example of adjusted child. In the crossover processing, 

it produces a child which has four operations for job 3 and two operations for 

job 2. This result does not conformed to JSP problem, so we must adjust it. 

We used the count to sort the gene and recoded the original gene position. 

According the sort result to change from gene position 7 which was job 3 and 

have the lower count to job 2. Making every job three operations and sort the 

gene based on original gene position. 
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Fig. 3.2 Example of adjusted child 

 

 

1 1 1 2 2 2 3 3 3 Parent A 

2 0 0 0 1 1 0 1 2 Count 

3 3 3 1 1 1 2 2 2 Parent B 

2 0 0 0 1 1 0 1 1 Count 

1 3 1 1 2 2 3 3 3 Child 

2 0 0 0 1 1 0 1 2 Count 

1 2 3 4 5 6 7 8 9 Position 

1 3 2 2 3 3 1 1 3 Child 

2 2 1 1 1 0 0 0 0 Count 

1 9 5 6 8 2 3 4 7 Position 

1 3 1 1 2 2 2 3 3 Child 

1 2 3 4 5 6 7 8 9 Position 

1 3 2 2 3 3 1 1 2 Child 

1 9 5 6 8 2 3 4 7 Position 

Crossover 

Sort by count 

Change the gene 
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Chapter 4 The flowchart of Algorithm 
Our algorithm divides into two parts. The first part is using the GA’s 

solutions to collect knowledge. In this part, there are two phases which are 

finds better solution by GA and using the operations table to analysis the 

better solution. The second part is using knowledge to improve the GA. This 

part was called the knowledge-based GA (KGA). There are three phases 

which was different from GA. Those phases are called blended crossover, 

forced mutation, and research knowledge. 

 

4.1 Collect knowledge by solution for GA 

 If we retain better solution, it will improve the quality of solution by GA. 

Therefore, we try to collect some useful information from GA’s solution. But 

GA does not demonstrate repeat ability or provide an explanation of how a 

solution is developed. On the other hand, those solutions are not stable and 

the information of gene different is not available, so we must use operation 

table to decide them. This part has two phases and was introduced as 

following: 

 

4.1.1 Collect solutions by GA 

 In this phase, we used the GA to collect the better solutions. There are 

two methods to generate the solutions. The first method was to executed the 

GA several times and retain the best solution from each times. But this 

method will spend much time to collect solutions. The second method was 

executes the GA one times and retain some better solutions. We will set size 
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of better solutions and collect those in each generation. In case that new 

solution better than original solution, we will replace it. The process will be 

stopped when the pro-set generation number is reached. The flowchart of 

collect solution was shown in Fig. 4.1 and described as following: 

Step1: Create initial population. 

We used random number to produce some chromosomes. Those 

chromosomes were called initial population and must conform to constrain of 

the JSP problem. 

Step2: Compute fitness value. 

 Each chromosome represents one solution. So we transform the 

makespan into the fitness value. If the chromosome has lesser makespan, it 

will have the higher fitness value. 

Step3: Generate new generation. 

 When we have initial population and fitness value, we will use those data 

to do the next step. 

Step4: Select population. 

 We use the roulette wheel method to select two chromosomes. In the 

roulette wheel, if this chromosome has higher fitness value, it will have higher 

probability to be selected. 

Step5: Crossover. 

 The crossover operator is performed if a randomly generated float 

number is less than the crossover rate. In this step, we use the PMX crossover 

to do it. 

Step6: Mutate. 

 The mutation operator is performed if a randomly generated float number 



 20 

is less than the mutation rate. In this step, we use the inversion mutation to do 

it. 

Step7: Those chromosomes in this generation is better than retained 

solution or not. 

 Many chromosomes were produced in each generation. In the generation 

1 and generation 2, we will retain all chromosomes as the better solutions. 

After generation 3, we use the fitness value of chromosome compare with 

those retrained better solutions. If the chromosome has higher fitness value 

than that of any retained solutions, the chromosome will replace the better 

solution. 

Step8: reach the generation number or not. 

 If the GA process has haven enough generation number, the algorithm 

will be stopped. 

 

4.1.2 Analyze solution to collect knowledge 

 We use the GA to collect some better solutions, but we can’t get the 

information. So we use the operations table to find attribute combination of 

the operation and to evaluate the difference of operation. Besides, analysis 

genes which have the certain of attribute combination of each gene position. 

The process of analyze the solutions was showed in Fig. 4.1 and described as 

following: 

Step1: Make the operations table. 

 In this step, we must use the attribute combination to decide the 

difference of gene for each chromosome. Therefore, four attributions be used 

and each attribution has several classes (see section 3.1.1). According those 
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classes of attribution, we will obtain the attribute combination of operation of 

job. Those attribute combination were be recorded in operations table (see 

section 3.1.2). 

Step2: Transform those better solutions by operations table. 

 We use the operations table to code those better solutions. 

Step3: Record the attribute combination and occurrence times for the same 

position. 

 For each gene position, we can collect which attribute combination had 

been occurred and it’s occurrence times (see 3.2). Those data which include 

the gene position, attribution combination and occurrence times (count) were 

called the knowledge. The knowledge will be used in the second part (KGA). 
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Fig. 4.1 The flowchart of collecting knowledge 
 

4.2 Knowledge-based GA 

 Knowledge-based GA (KGA) has three phases that is different from 

traditional GA. The first phase is blended crossover. We will reduce the 
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minimum easily. We use the two crossover methods to produce child 
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chromosome. The second phase is forced mutation. We remove the mutation 

rate and mutate the child chromosomes which were produced by crossover if 

it’s not better than parents. The third phase is to recollect the better solution 

and replace the knowledge. 

 

4.2.1 Blended crossover 

 Traditional crossover methods randomly select two points to recombine 

and produce the child chromosome. Therefore, using random can’t assure the 

quality of child. So we use the knowledge to decide the fitness-gene from 

parent chromosome and execute the eugenic crossover (see 3.3.1). However, 

this crossover can find some optima solution but fall into the local minimum 

easily. Based on this reason, we use the PMX crossover to increase the 

diversification and try to balance intensification and diversification. It showed 

in Fig. 4.2 and described as following: 

Step1: Select the crossover operator. 

 We use the threshold to choose the crossover operator. If the generation 

number is lower than threshold, using eugenic crossover and making this 

crossover operator to speed up the convergence rate. And if the generation 

number is higher than threshold, using PMX crossover and making this 

crossover operator to raise the variation of chromosome. Hope the algorithm 

leap from the local minimum. 

Step2: Determine if the child is better than parent or not. 

 The child that was produced by crossover must be better than one of 

parents. If the child better than parents, this chromosome was retained to the 

new population. And if the child was not better than one of parents, this 
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chromosome must be mutated. 

 

4.2.2 Forced mutation 

 Traditional mutation operator was executed when the random number is 

lower than the mutation rate. In our algorithm, mutation operator was 

executed when the child is not better than parents. This process increases the 

search space and uses the two-point mutation to do the local search. The 

forced mutation was showed in Fig. 4.2 and described as following: 

Step1: Mutate the child. 

 If the child produced by crossover is not better than one of parents, this 

chromosome must be mutated. The mutation operator was to randomly select 

two gene positions and exchange these genes.  

Step2: Determine if the child is better than parent or not. 

 If the child produced by mutation is better than one of parents, this child 

was retained to the new population. And if the child was not better than 

parents, this child must be re-mutated. This process will be ended when the 

child was better than one of parents or the mutation times was higher than the 

threshold. 

Step3: Determine if the mutation times is higher than threshold or not. 

 The mutation times was counted when the child not better than one of 

parents by crossover. If the mutation time was not higher than the threshold, 

the child must be mutated until the child better than parents. Otherwise, we 

must give up this child and select two parents to produce the new child by 

crossover again. 
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Step4: Determine if the crossover times is higher than threshold or not. 

 The crossover times was counted when the child had been mutated 

several times and had been done crossover. If the crossover times is equal the 

threshold, the child was retained to new population. Otherwise, we select two 

parents to produce the new child by crossover again. 

 

4.2.3 Collect or replace new knowledge 

 In the part 1, we had collected the knowledge. But the knowledge can’t be 

used until the KGA is completed because the knowledge help the solution 

become better than GA’s. If we still use the past knowledge, the solution will 

be limited and can’t find the other better solution in other place. Therefore, we 

must retain new better solution in each generation and analyze those to collect 

new knowledge. If the algorithm was fall into local minimum, we will refresh 

knowledge. 

 

4.2.4 The flowchart of KGA 

 Fig. 4.2 shows the flowchart of KGA. We will decide if the knowledge 

collected can be used to other JSP problem or not. In the KGA, we can use the 

same JSP problem with GA or select different JSP problem to do. The KGA 

process was described as following: 

Step1: Create initial population. 

 We used random number to produce some chromosomes. 

Step2: Compute fitness value. 

 Transform the makespan into the fitness value. If the chromosome has 

lesser makespan, it will have the higher fitness value. 
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Step3: Generate new generation. 

 When we have initial population and fitness value, we will use those data 

to do the next step. 

Step4: Select population. 

 We use the roulette wheel method to select two chromosomes. This step 

is the same with GA. 

Step5: Crossover. 

 In the blended crossover, we must select which crossover operator by 

generation number (see 4.2.1). If the child was not better than one of parents, 

we must do the mutation. 

Step6: Mutate. 

 In the forced mutation, we will mutate the child which is not better than 

parents in crossover (see 4.2.2). 

Step7: Meet the population size or not. 

 If this generation has enough population, this generation will be over. 

Step8: Compute fitness value. 

 In this process, we will compute fitness value of new population and 

using new population in the next generation. 

Step9: Reach the generation number or not. 

 If the KGA process has enough generation number, the algorithm will be 

over. Otherwise, continuing the KGA and determine the solution fall into 

local minimum or not. 

Step10: If the solution fall into local minimum or not. 

 If the best solution in each generation had not change several times, we 

will determine the solution has fall into local minimum. When the solution 
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does not fall into local minimum, we will collect the better solution from this 

generation. The collecting of the better solution is the same the part 1. If the 

solution is better than one of the better solution which was retained, we will 

retain this solution until the solution fall into local minimum. When the 

solution was fells into local minimum, we will collect new knowledge and 

refresh knowledge by new knowledge. 

Step11: Refresh population 

 When the solution fell into local minimum, we must refresh knowledge. 

And this situation was represented this search space that can’t find the better 

solution. So we must refresh the population and search other space again. In 

the refresh population process, we will sort the original population by fitness 

value and selecting the first 20% population to new population. The other new 

population was produced by random number. 
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Fig. 4.2 The flowchart of KGA 
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Chapter 5 Experiential results 

In our experiment, we compare with GA. Therefore, we use three 

different algorithm processes to do experiment. Those are called KGA*, 

KGA** and KGA. KGA* excluded the random effect during the crossover 

and mutation steps. Therefore, we use the random number to decide if 

crossover or mutation showed be down. If the random number lower than 

crossover probability or mutation probability, we will crossover or mutate the 

chromosome. GA was run several times to collect knowledge and retains the 

every best solution in every run times. KGA** still use random number to 

collect crossover or mutation. But the collect knowledge method was to run 

GA one time and retains the better solution in each generation. KGA removed 

the influence of random number and increased search space by change 

population and forced mutation.  

The following experiments showed the 6×6 JSP problems solving only 

for the purpose of illustrating the computational procedure discussed above. 

In the first experiment, we try to establish parameter of GA. Then we used the 

best parameter to do the second experiment. In the second experiment, we try 

to evaluate the offspring which was produced by eugenic crossover. This 

result proved that knowledge is useful in selecting fitness-gene and can 

improve the quality of child. However, KGA* must spent much time to 

collect knowledge. So we use KGA** to improve the knowledge collecting 

speed and found that this method did not influence the result. In the third 

experiment, in order to prove the knowledge is useful in finding better 

solution, we run different 6×6 JSP cases to compare with GA. Finally, 
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combining all the result and using KGA to solve the 10×10 benchmark 

problem. 

 

5.1 Establish parameter 

 In our algorithm, we used the GA to select some better solutions in each 

generation. And use those better solutions to collect information for finding 

the best solution. Therefore, we used three kinds of crossover probability (Pc) 

and four kinds of mutation probability (Pm) to do run experiments. Fig. 5.1 to 

Fig. 5.3 displays the results by using crossover probability of 0.6, 0.7 and 0.8. 

We find that the result in Fig. 5.3 is better than others, because the astringency 

is better in each mutation probability. When mutation probability is 0.2, the 

astringency is better and can find the best solution first. According to this, we 

decided to use 0.8 and 0.2 for crossover probability and mutation probability 

respectively. 
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Fig. 5.1 Crossover probability = 0.6 (GA) 
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Fig. 5.2 Crossover probability =0.7(GA) 
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Fig. 5.3 Crossover probability =0.8(GA) 

 

5.2 Evaluate offspring 

 KGA* used the information that we obtained from GA to evaluate which 

gene is better and can be reserve as offspring in the same position by 

crossover operator. Therefore, we try to evaluate whether those information 

be used by KGA* can bring the better offspring or not. In this 

experimentation, we joined the KGA** to assure that using information can 

make our offspring better than that of GA. The process of KGA** is the same 

as KGA*, but it collected information from each generation by run GA one 

time and reduces more processing time than KGA*. Table 5.1 shows the 

probability that offspring better than parents in crossover step. Superior rate is 

the percentage that offspring better than both parents and improving rate is 
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offspring equal or better than one of parents. We can find that using KGA* or 

KGA** are all better than GA in Superior rate. But, the Superior rate of 

KGA* is very close to KGA**. This result shows that using our algorithm can 

bring the better offspring in crossover step. But the KGA** can reduce the 

knowledge collecting time as it run GA one time only. 

 

Table 5.1 Offspring evaluation 

 GA KGA* KGA** 

Number of total offspring 17628 17620 20043 

Number of superior offspring 9197 10472 11819 

Number of improving offspring 4361 1645 2392 

Superior rate 52.17 % 59.43 % 58.97 % 

Improving rate  24.74 % 9.33 % 11.93 % 

  

After evaluating offspring, we can assure that our knowledge is useful. 

Therefore, we must test whether the knowledge used in the JSP problem is 

useful or not. Fig. 5.4 shows the solutions of the JSP problem be run 200 

times for KGA* and KGA**. Based on the result, we know the knowledge is 

useful in providing gene selection information which leads to better solution. 

According to the result, we find that KGA* and KGA** are very close for the 

200 times trials. Therefore, we use the KGA** to as the collecting knowledge 

method because it save collecting time.  
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Fig. 5.4 The result of KGA*, KGA** and GA (run 200 times)  

 

5.3 Compare with GA 

 This algorithm used some better solutions from GA to collect the 

knowledge and used the knowledge to generate better offspring in crossover 

step. Based on the idea, we suppose that using our algorithm can bring better 

solution than GA or its convergence may be faster than GA. In the next 

experiment, we will compare the performance of KGA** with GA on the two 

6×6 randomly produced JSP problems. 

This experiment solved those problems by KGA** and GA. According to 

the results, we have two conclusions. Firstly, the algorithm (KGA**) have the 

faster convergence than GA whether both method could reach the same 

minimum makespan. Secondly, the different of convergence time is larger 

when the minimum makespan is larger. The makespan of case 1 (see Fig. 5.5) 

and case 2 (see Fig. 5.6) are 464 and 619. We assure that our algorithm can 

find the same makespan with GA, but we can find the makespan in the 5 and 

15 generation. And the generation number is lesser than GA’s more. Based on 

the result, we can prove that our algorithm have faster convergence. Besides, 

when the problems have larger makespan, the algorithm must spend much 
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time to find the minimum makespan. But the search speed of KGA** is faster 

than GA. 
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Fig. 5.5 Makespan of case 1 
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Fig. 5.6 Makespan of case 2 

 

5.4 10×10 Benchmark problem 

 Based on the prevent results, we know that our algorithm can make the 

convergence faster. But it may fall into the local minimum easily. The study 

of Michalewicz [29], Jain and ELMaraghy [2] showed that the setting of 

parameters may performance of algorithm in different problem. Therefore, we 

establish the KGA algorithm by excluded the parameters (mutation 

probability and crossover probability) from the KGA**. In this method, the 

offspring is generated by crossover and this method uses the mutation to do 

local search. In the blended crossover, we blended the PMX crossover and 
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eugenic crossover into process. We used the eugenic crossover to do the first 

several generations and used the PMX crossover in the rest generation to skip 

over the local minimum. To sum up, this method may skip over the local 

minimum and help it convergence fast. Besides, if the child chromosome is 

not better than one of parents, it will proceed to forced mutation process until 

it become better than parents or the times is more than 30. This forced 

mutation process will help the algorithm to do the local search. Beside, if the 

algorithm fell into local minimum, we will refresh the population and refresh 

the knowledge by recollect in KGA process. 
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Fig. 5.7 The makespan of the 10×10 benchmark problem 

 

 In this experiment, we use KGA for the 10×10 benchmark problem. This 

problem was generated by Fisher and Thompson [27]. Lawler et al. [11] 

report that within 6000s when applying a deterministic local search to this 

problem and find more than 9000 local optima. It is perceived that this 

problem has the difficult to find the optimal solution. Besides, Carlier and 

Pinson [14] proved that the optimal makespan is 930. We can use this result to 

determine whether the solution by KGA is good or not. Fig. 5.7 shows the 

result by GA and KGA. In this figure, the best solution by KGA is 936 and by 
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GA is 1053. And it just spent 440 generations to find the makespan 964. This 

result proved that KGA had faster convergence than GA and its result better 

than GA. Table 5.2 shows the progress of the 10×10 benchmark instance. 

According to this table, we can know that we did not find the optimal 

makespan, but the solution by our algorithm is very close the optimal 

makespan.  

 

Table 5.2 Progress of the 10×10 benchmark instance 
Researchers who achieved 

solution 
Makespan Researchers who achieved 

solution 
Makespan 

Fisher and Thompson(1963) 1101 Lageweg(1982) 935 

Balas(1969) 1177 Fisher et al.(1983) 1084 

Schrage(1970) 1156 Lageweg(1984) 930 

Florian et al.(1971) 1041 Barker and McMahon(1985) 960 

Bratley et al.(1973) 980 Adams et al.(1988)(sbII) 930 

McMahon and Florian(1975) 972 Carlier and Pinson(1989) 930 

Lageweg et al.(1977) 1082    

These results are achieved from experiments performed by Jain and Meeran [4] 

 

 Fig. 5.8 shows the makespan for KGA for 100 time trial. We can find that 

most of the solutions fall into the range between 960 and 969. This result can 

represent our algorithm is steady. And the best solution by KGA is 936. This 

solution is not the optimum solution, but it is close the optimum solution. For 

those result, we can prove KGA is useful and using the knowledge can 

improve the quality of solution.  
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Fig. 5.8 The makespan for KGA (run 100 times)  
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Chapter 6 Conclusions and discussions 
This paper has presented a theoretical and experimental study of the KGA 

process and concept. KGA is an algorithm which was used the knowledge to 

improve the deficiency of GA. Therefore, retaining some better solutions 

from GA and evaluate those to collect knowledge. The knowledge will be 

used in crossover operator and the KGA process. However, if we still use the 

random number to decide if crossover showed be downed or not, it will make 

our algorithm unsteadily. And the parameters could not be used in each case. 

So we use the child to decide whether crossover or mutation should take place 

and used knowledge to speed up the convergence. Further, we want to avoid 

the chance that knowledge will make the solution fall into local minimum 

easily. In the KGA, we used two crossover operators to do it. Knowledge was 

used in eugenic crossover to increase the intensification. The PMX crossover 

was used to increase the diversification. And forced mutation process uses the 

simple change to do local search. If the solution fell into local minimum, we 

will refresh the knowledge and population. 

According to those experiments, we can obtain some conclusions. The 

first, the knowledge is useful. In the eugenic crossover, the knowledge was 

used to evaluate the fitness-gene and retained the higher fitness-gene in 

offspring. This method can raise the quality of offspring and produce better 

offspring. Based on this result, the knowledge is useful in provide the gene 

selection information. But this method will make the algorithm fall into local 

minimum easily. This is because when we can find the better solution than 

GA, the knowledge becomes useless. Therefore, the knowledge must be 
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renewed in KGA process. The second, this algorithm can raise the 

convergence. Because the algorithm used the knowledge to improve the 

crossover, it will be leaded to search the specific space. For this reason, the 

method could search out the better offspring in short time and raised the 

convergence.  

The third, the algorithm can balance the intensification and diversification. 

This algorithm used the knowledge to search special space and improve the 

convergence. Therefore, this method achieves the intensification which makes 

the algorithm to search the space where better solution exists. But if the 

algorithm did not have enough diversification, it could not find better solution 

and fall into local minimum completely. So the mutated process and refreshed 

population were used in KGA. Using the forced mutation to do the local 

search and to find other new solution neighbored on the better solution. And 

when no better solution could be found better in several generations, the 

population must be renew so that search other space. Based on the KGA result, 

we can find the better solution better than GA and achieve to balance between 

intensification and diversification. The fourth, the KGA is steady. In the 

10×10 JSP problem, although we can’t find the optimum solution, we can find 

the solution which is close to optimum solution. And those solutions which 

were found by KGA are steadily. Because the solutions are center on certain 

space and very close the optimism solution. For those reasons, we can prove 

our algorithm (KGA) is useful and may be used in other optimum problem.  

 In the future, we can modify the two points. The first, we can use other 

the algorithm to collect knowledge. As GA can’t find the optimal solution, if 

we can use other algorithm to collect knowledge, the knowledge may be 
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better than now. The second, we use the simple statistic to count the 

occurrence times. Some statistic method could be used in inference more 

sophisticated the result. Those points may be help the KGA become more 

solid. 
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