
 i

南 華 大 學

資訊管理學系

碩士論文

 以知識為基礎之基因演算法於 JSP問題上的應用

 A knowledge-based genetic algorithm for the job

shop schedule problem

研 究 生：簡琬蓉

指導教授：邱宏彬

中華民國 95 年 6 月 3 日

 ii

 iii

以知識為基礎之基因演算法於 JSP問題上的應用

學生：簡琬蓉 指導教授：邱宏彬

南 華 大 學 資訊管理學系碩士班

摘 要

本論文提出一新的改良式基因演算法（KGA），此演算法透過由傳統

基因演算法的結果搭配屬性的辨識去收集知識，並利用知識引導 KGA的

過程與交配時基因優良度的評估。此外，為了避免因為知識的應用而使

演算過程容易落入區域最佳解，本研究利用突變的方式做區域搜尋，並

在結果確定落入區域最佳解時，重新置換母體及替換舊有知識，藉由這

些改變來使得本演算法可以同時兼顧集中性和多樣性。最後透過實驗的

結果證實，本演算法確實是穩定的且可以找出不錯的排程，而知識的應

用也可有效的提供引導的資訊。

關鍵字：零工式排程問題、改良式基因演算法、知識

 iv

A knowledge-based Genetic Algorithm for the job shop scheduling

problem

Student：Wan-Jung Chien Advisors：Dr. Hung-Pin Chiu.

Department of Information Management
The M.B.A. Program
Nan-Hua University

ABSTRACT

This study presents a novel use of attribution for the extraction of

knowledge from job shop scheduling problem. Our algorithm improves the

traditional GA and using knowledge to keep the quality of solution. Based on

the knowledge, the search space will be leaded to a better search space. In

addition, this study uses mutation to do local search and refresh the

knowledge and population when the solution fall into local minimum. Based

on those methods, our algorithm will have the intensification and

diversification. Those can make the algorithm have good convergence and

leap for the search space to find the better solution. The experiment results

show that algorithm steadily and can find the approximate optimal solution.

And the knowledge is useful in provide the gene selection information.

Key words: JSP problem, hybrid GA, knowledge

 v

LIST OF CONTENT
CHAPTER 1 INTRODUCTION.. 1

CHAPTER 2 RELATED WORKS .. 4

2.1 JOB SHOP SCHEDULING PROBLEM... 4
2.2 GENETIC ALGORITHM... 5

2.2.1 Crossover operator ... 5
2.2.2 Mutation operator ... 6

2.3 GA-BASED JSP ALGORITHM... 6
2.3.1 Encoding of chromosome .. 7
2.3.2 Decoding of chromosome.. 7

CHAPTER 3 RESEARCH APPROACH .. 9

3.1 DATA PREPARATION.. 9
3.1.1 Attribution ... 9
3.1.2 Operations Table ..11

3.2 COLLECT KNOWLEDGE... 12
3.3 DESIGNING CROSSOVER OPERATOR .. 14

3.3.1 Eugenic crossover ... 15
3.3.2 Adjust child ... 16

CHAPTER 4 THE FLOWCHART OF ALGORITHM ... 18

4.1 COLLECT KNOWLEDGE BY SOLUTION FOR GA ... 18
4.1.1 Collect solutions by GA... 18
4.1.2 Analyze solution to collect knowledge... 20

4.2 KNOWLEDGE-BASED GA ... 22
4.2.1 Blended crossover ... 23
4.2.2 Forced mutation .. 24
4.2.3 Collect or replace new knowledge .. 25
4.2.4 The flowchart of KGA ... 25

CHAPTER 5 EXPERIENTIAL RESULTS... 29

5.1 ESTABLISH PARAMETER ... 30
5.2 EVALUATE OFFSPRING.. 31
5.3 COMPARE WITH GA ... 33
5.4 10×10 BENCHMARK PROBLEM... 34

CHAPTER 6 CONCLUSIONS AND DISCUSSIONS ... 38

 vi

REFERENCE .. 41

 vii

LIST OF TABLES

Table 2.1 JSP problem……………………………………………………..5

Table 3.1 Classes substitutions…………………………………………...11

Table 3.2 Example of operations table…………………………………...12

Table 3.3 Example of attribute association in the gene position…………14

Table 5.1 Offspring evaluation…………………………………………...32

Table 5.2 Progress of the 10×10 benchmark instance……………………36

 viii

LIST OF FIGURES

Fig. 2.1 Job shop scheduling gene………………………………………..7

Fig. 2.2 Decoded active schedule………………………………………...8

Fig. 3.1 Example of eugenic crossover…………………………………15

Fig. 3.2 Example of adjusted child……………………………………..17

Fig. 4.1 The flowchart of collecting knowledge………………………..22

Fig. 4.2 The flowchart of KGA…………………………………………28

Fig. 5.1 Crossover probability = 0.6 (GA) ……………………………..30

Fig. 5.2 Crossover probability =0.7(GA) ………………………………31

Fig. 5.3 Crossover probability =0.8(GA) ………………………………31

Fig. 5.4 The result of KGA*, KGA** and GA (run 200 times) ………...33

Fig. 5.5 Makespan of case 1…………………………………………….34

Fig. 5.6 Makespan of case 2…………………………………………….34

Fig. 5.7 The makespan of the10×10 benchmark problem………………35

Fig. 5.8 The makespan for KGA (run 100 times) ……………………....37

 1

Chapter 1 Introduction

Scheduling problems exist everywhere in real-world circumstance,

especially in the flexible manufacturing world. Many people pay close

attention to it because poor scheduling can lead to higher cost for

manufacturers and consequently higher prices for customer. Therefore, if we

want to have the better efficiency, we must have a good schedule to promote

the efficiency and reduce the time in the manufacturing process. Nevertheless,

scheduling problems are categorized into different groups in the different

machine environment (e.g., single machine problems, parallel machine

problems, job shop problems, etc,). In those groups, job shop problem (JSP)

emphasizes the order of job in the every machine. In the other word, it

considers the order of every operator of job but not prescribes which machine

is the first machine for the job. As a result, JSP is more complicated than other

scheduling problem. Therefore, this study has focused on the JSP problem.

 JSP is among the hardest combinational optimization problem [21]. Most

of the researches used different approaches to solved JSP such as: Tabu search

[8, 16], simulated annealing [22, 26], ant colony system [1], neural network

algorithm [3], genetic algorithm (GA) [7, 9, 28, 18], and others. GA-based

approach was used to solve JSP problem considerably in recent years among

these studying. Cheng, Gen, and Tsujimura [24] have given a detailed sort

survey on papers using GA to solve classical JSP in Part Ⅰsurvey.

Nevertheless, using traditional GA can’t give consideration convergence rate,

quality of solution and stability of search process. On the other hand, this

 2

algorithm can’t balance intensification and diversification. Ignore the

intensification will spend much time to search. And disregard the

diversification will fall into local minimum easily. So many researches tried

modify GA with other algorithm. Cheng [25] discuss various hybrid GA to

solve JSP.

In recent years, many researches wanted to improve intensification or

diversification. Mattfeld and Bierwirth [5] used a heuristic reduction of search

space which can help GA to find better solution in a shorter computation time.

Goncalves, Mendes, and Resende [15] constructed the scheduling to generate

parameterized active schedules and used a local search heuristic to improve

the solution in evolutionary process of GA. To sum up, there studies focused

on improving the search space. Therefore, better solutions could be expected

but the quality of solutions could not be guarded. Watanabe, Ida and Gen [20]

use GA with modified crossover operator for JSP problem. It made use of

random number to decide what gene must be reserved for children

chromosome. If the offspring do not conform to constrain the JSP problem, it

will be regulate by some rules. This paper changed the traditional crossover

operator and considered influence of each gene. Nevertheless, using the

random number to decide which gene can be retained to offspring did not

exclude random effect.

In order to keep the quality of solutions, some studies used the better

chromosome to replace the bad chromosome. This method is accomplished by

first coping some of the best individuals from each generation to the next, in

what is called an elitist strategy [9]. Chang, Hsieh and Hsiao [23] reserved

some better chromosomes and replaced some bad chromosomes in each

 3

generation. Those methods supposed that if there is a better population, it will

the easy to produce the better offspring in crossover operator. However, it was

not exactly so and it may easy to fall into local minimum. For this reason, we

propose the idea that if we can evaluate the fitness for genes and choose the

better gene to generate the offspring which may lead to a better solution. And

if reserving the better chromosomes can help the quality of solution, those

better chromosomes may be have useful information for finding the better

solution.

Based on those ideas, we will collect some best solutions by GA to sort

some knowledge and use it to evaluate the fitness for gene. And then make

use of concluded result to design the suitable crossover operator for JSP

problem. Hope to use this idea to speed up the convergence and improve the

solution for JSP problem. Beside, we use mutation to do the local search,

hope this can keep the diversification and avoid intensification overly. We

will describe the design and the logic behind this method. And use the

experiment to demonstrate the feasibility. This research is a new attempt and

which can apply to other optimization problem. Therefore, it is a very

important problem and merit discussion about it.

In this paper, we present a new knowledge-based genetic algorithm (KGA)

for solving the job shop scheduling problem. The paper will be divided into

the following sections. Section 2 describes the related work of the problem.

Section 3 will describe the flow of the knowledge-based GA. Section 4 shows

the several experiment results in the comparison to those of existing GA.

Section 5 makes conclude this paper.

 4

Chapter 2 Related works

2.1 Job shop scheduling problem

 JSP problem has been described as follows [6]: there are m different jobs

and n different machines to be scheduled. Each job is composed of a set of

operation and the operation order on each machine is prespecified. The

required machine and the fixed processing time characterize each operation.

There are several constraints on jobs and machines:

l A job does not visit the same machine twice.

l There are no precedence constraints among the operations of different

jobs.

l Operations cannot be interrupted.

l Each machine can process only one job at a time.

l Neither release times nor due dates are specified.

A schedule is an allocation of the operations to time intervals on the

machines. According to the allocated operation sequences in a schedule, the

time required to complete all jobs is called makespan of the schedule. Table

2.1 shows a 3×3 JSP problem and concluded operations, job number, machine

number, process time. For example, when we observe J1 and O1, it means

that operation 1 of job 1 be arranged for machine 2 (M2) and spend 2 time

units.

 5

Table 2.1 JSP problem

 Operations

Job O1 O2 O3

J1 M2(2) M3(3) M1(7)

J2 M3(1) M1(9) M2(3)

J3 M1(3) M2(8) M3(5)

2.2 Genetic algorithm

 Genetic algorithm is search algorithm developed to explain and simulate

the mechanisms of natural systems. In GA applications, variables of the

solution are encoded into a structures string that presents a list of genes. A

fitness function is also required, which assigns a figure of merit to each

encoded solution. During the run, parents must be selected for reproduction,

and recombined or mutated to generate offspring. The GA uses a measure of

fitness of individual chromosome to carry out reproduction. As reproduction

takes place, the crossover operator exchanges parts of two single

chromosomes and the mutation operator changes the gene value in some

randomly chosen location of the chromosome. As a result, after a number of

successive reproductions, the less fit chromosomes become extinct, while

those best able to survive gradually come to dominate the population.

2.2.1 Crossover operator

 Crossover operator was used to recombine parents and generate offspring.

There are many studies on the design of crossover operator. Partially Mapped

Crossover (PMX) copies a section of genes from one parent and the rest by

 6

position-wise exchanging [10]. Order crossover (OX) can be viewed as a kind

of variation of PMX that used a different repairing procedure [17]. And,

Order-based Crossover (OC2) is a slight variation of position-based crossover

in that the order of symbols in the selected position in one parent is imposed

on the corresponding ones in the other parent [12].

2.2.2 Mutation operator

 Some mutation operators have been proposed for permutation

representation. Inversion mutation selects two positions, within a

chromosome at random and then inverts the substring between selects two

positions. Shift mutation first chooses a gene randomly and shifts it to a

random position of right or left from the gene’s position [19].

2.3 GA-based JSP algorithm

 The JSP problem has captured the interest of a significant number of

researches and a lot of literature has been published, but no efficient solution

algorithm has found yet for solving it to optimality in polynomial time. For

this reason, there are many researches use the GA or hybrid GA to solve the

JSP problem. For example, Kennedy provided the offspring will pass on its

traits acquired during this local optimization to future offspring. Giffler and

Thompson used to deduce a schedule from the encoding of priority

dispatching rules. Roughly is to combine the GA with beam search technique

in JSP problem [24]. Those algorithms must be used in executing GA. So

encoding the chromosome, decoding chromosome and representing the

 7

chromosome must be understood.

2.3.1 Encoding of chromosome

 Using genetic algorithm to solve problem, solutions must be encoded in a

format that allows for the operations of crossover and mutation. This research

uses Syswerda’s [13] list of order operations representation as the gene model

for JSP problem. The 3×3 JSP is encoded into a 9 integer array. For example,

a solution might be the sequence: {1,3,3,2,1,2,1,2,3}. This sequence is called

a chromosome. Each element in the array corresponds to a job. Successive

references to a job in the array imply the next available operation for that job.

Fig. 2.1 shows the schedule ordering from the previous solution sequence.

Fig. 2.1 Job shop scheduling gene

2.3.2 Decoding of chromosome

 Every chromosome represents a schedule. We must decode a

chromosome to its corresponding schedule to evaluate the makespan. The

schedule with the shortest makespan is regarded as the final solution for the

given JSP problem. The makespan was calculates by order of operations for

chromosome. For example, ojim denote the ith operation of job j on machine m

[24]. The chromosome shown in Fig 2.1can translated into a unique list of

ordered operations of {o112, o123, o131, o213, o221, o232, o331, o322, o333}. Operation

o112 has the highest priority and is scheduled first, then o123, and so on. The

1 1 2 1 2 2 3 3 3 Operation

1 3 3 2 1 2 1 2 3 Job

 8

resulting active schedule is shown in Fig 2.2.

Fig. 2.2 Decoded active schedule

 9

Chapter 3 Research approach
 Our algorithm was modified GA’s deficiency. We use some better

solutions (chromosomes) to collect knowledge and designing a eugenic

crossover. However, those better solutions just bring the limited information.

We can understand the machine number and processing time for this operation,

but we can not collect the integrate information. Therefore, we design the

operation table to classify those operations before collecting knowledge. Use

knowledge to decide the fitness of gene in crossover operator and adjust the

chromosome.

3.1 Data preparation

 Hsieh and Hsiao [23] reserved some better chromosomes and replace

some bad chromosome in each generation and improve the solution of GA.

According to this result, we can assume that those better chromosomes may

be included some useful information for improve solution. But GA can not

demonstrate repeat-ability or provide an explanation of how a solution is

developed. For this reason, we can’t induce information from the solutions of

GA. Therefore, we will use the method which was brought up by Koonce and

Tsai [6]. This method used attributions to induce information from the

solution of GA.

3.1.1 Attribution

Koonce and Tsai [6] proposed that the JSP problem could be stored in

another relation with the following structure: {Job, Operation, Machine, and

 10

Process}. Therefore, they used five attributions to do hierarchies which were

related to the JSP problem. Every attribution had classes itself. In this study,

we use the attribution to determine the gene in each gene position. This idea

could not decide the priority of gene. So we will use four of those attributions

to make the attribution table be used in the next research phase. The following

classification hierarchies are based on the 3×3 JSP problem and four

attributions is listed as following:

(1) Operation: The Operation attribute is an ordinal variable representing the

sequence of the operation in the job. It was divided into three classes if

operation would be adequate for induction. Operation 1 was classified as

“first”, operation 2 was classified as “middle”, and operation 3 was

classified as “later”.

(2) Process time: Process represent the time for processing for that particular

operation. It was classified three classes: the first 1/3 as “short”, the second

1/3 as “middle”, and the third as “long”. For the 3×3 cases studied,

processing times ranged from 1 to 9 time units. A simple division of time

is when time less than 3 is “short”; long than 3 and short than 6 is

“middle”; and long than 6 is “long”.

(3) Remaining process time: Remaining process represents the cumulative

processing time for all subsequent operations for that job. Because it’s

range is domain, so we will find the maximum remaining process time and

use maximum remaining process time to divide into three classes: the first

1/3 as “short”, the second 1/3 as “middle”, and the third as “long”. Giving

an example, if the maximum remaining process time is 24, the “short”,

“middle” and “long” with bounds of 7, 14, and 24.

 11

(4) Machine loading: Machine loading is a property of the machine on which

an operation is scheduled. It was divided into two classes: the first as

“light”, and the rest as “heavy”. If the value below average, it is classified

as “light”. If the value below average, it is over average as “heavy”. Table

3.1 shows the attribution table related to the classes.

Table 3.1 Classes substitutions

Value
Attributes Classes (Code)

first 1/3 second 1/3 third 1/3 Operation
first（1） middle（2） later（3）

first 1/3 second 1/3 third 1/3 Process time
short（1） middle（2） long（3）

first 1/3 second 1/3 third 1/3 Remaining
process time short（1） middle（2） long（3）

less than average others Machine loading
light（1） heavy（2）

3.1.2 Operations Table

 After the attribution table is set, the operation of a job will be coded using

the combination of attribute and recorded in operation table. Table 3.2 shows

the test case in the operations table. For example, Table 2.1 shows that

operation 1 of job 1 is the first operation, so operation attribute belong to first

1/3 and be coded 1. And this operation takes 2 time units. While the

processing times ranges from 1 to 9 time units, so it belongs to first 1/3 and be

coded 1. For operation 1, remain processing time was the sum of the time

units from operation 2 and operation 3. In this test case, the longest remain

 12

processing time is 13, so it belongs to third 1/3 and be coded 3 (see table 3.1).

The average of machine loading is 13 and all operations be assigned to

machine 2 takes 13 time units. So machine loading attribution belongs to the

heavy class and be coded 2 (see table 3.1).

Table 3.2 Example of operations table

(Job,
O

peration)

operation

Process tim
e

R
em

ain
processing

tim
e

M
achine

loading

(Job,
O

peration)

operation

Process tim
e

R
em

ain
processing

tim
e

M
achine

loading

(1,1) 1 1 3 2 (2,3) 3 1 1 2

(1,2) 2 1 2 1 (3,1) 1 1 3 2

(1,3) 3 3 1 2 (3,2) 2 3 2 2

(2,1) 1 1 3 1 (3,3) 3 2 1 1

(2,2) 2 3 1 2

3.2 Collect knowledge

 Better solutions (chromosome) may be have some information and can

help us to find optimal solution. Therefore, we could take advantage of those

better solutions to collect knowledge. However, those solutions just tell me

which operation could be sort in this position. We could not understand the

influence factor on gene position. So we used the operations table to analyze

those operations in each position. Every operation was defined by four

attributions and has its attribute value. Attribute combination combined those

 13

attribute value to determine the difference of operation. We use that to decide

which operation fits better in each position. If this attribution combination in

this position has higher occurrence times and called fitness value or count.

Those fitness values were collected by some better solution. If it had higher

value, it meant this gene in this position were discovered in better solution

sever times. So we will use this fitness value to evaluate fittest-gene in each

gene position and those fitness values in each position were called the

knowledge. Next, we will use an example to explain it.

Table 3.3 shows the attribute combination in the gene position. We

suppose there are three better solutions such as {2, 1, 3, 1, 1, 3, 3, 2, 2}, {1, 3,

2, 3, 1, 1, 2, 2, 3}, and {1, 3, 2, 1, 2, 2, 1, 3, 3}. The gene 2, 1, and 1 are the

first gene of three solutions. Those mean the operation 1 of job 2 and

operation 1 of job 1. According to the Table 3.2, we can know the attribute

combinations are (1, 1, 3, 1), (1, 1, 3, 2), and (1, 1, 3, 2). Therefore, there are

two kinds of attribute combinations in gene position 1 (see Table 3.3). The

occurrence time (count) of (1, 1, 3, 1) is 1 and of (1, 1, 3, 2) is 2. We used this

method to collect knowledge and those will be used in the crossover operator.

Based on the position and attribute combination of gene, we could find the

count. The count was used to evaluate fitness of gene. If the count is higher,

the gene had higher fitness value and it was reserved in child.

 14

Table 3.3 Example of attribute combination in the gene position

Gene
position

Attribute
combination

Count Gene
position

Attribute
combination

Count

1131 1 2322 1
1

1132 2 3312 1

2 1132 3

6

3112 1

1132 1 3211 1
3

1131 2 2312 1

2121 2

7

3312 1
4

2322 1 2312 1

3312 1 3112 1

2121 1

8

2322 1

3112 1
5

2312 1
9

3211 2

3.3 Designing crossover operator

 “Keep the better gene in the chromosome” is the important notion in the

crossover operator. Therefore, we use the knowledge which collected from

some better solutions to decide which gene is better and can be retained. In

other words, use operations table to decide the attribute combination of

operation from parent chromosome. And then using those attribute

combination and gene position to find the count. This count is the fitness

value of the gene. And we must choose one gene of parent chromosomes

which has higher fitness value in the same position. Based on this method to

retain the better gene, and hope it to improve the quality of offspring. If the

solution does not conform to JSP problem, we use the fitness value (count) to

adjust it. The adjusting method is the job which does not have enough

 15

operations. The targeted replaced operation is the operation with lowest

fitness value.

3.3.1 Eugenic crossover

 This crossover was based on the knowledge to decide which gene can be

retained to the child chromosome and was called eugenic crossover. Eugenic

crossover is accomplished through the following steps, and Fig 3.1

demonstrates an example:

1. Choose two chromosomes, named parent A and parent B.

2. Use the operations table to determine the attribute combination for parent

chromosome. If the attribute combination in this position was never

existed before, the count will be coded 0.

3. Using the attribute combination and gene position to retrieve the count.

4. Choose one gene from parent which has higher count in the same position.

If the count is the same, randomly choose one gene from parent.

Fig. 3.1 Example of eugenic crossover

3 1 2 1 1 3 2 2 3 Parent A

2 3 2 2 1 1 1 1 2 Count

2 1 3 2 1 1 3 2 3 Parent B

1 3 1 0 1 1 0 1 2 Count

3 1 2 1 1 3 2 2 3 Child

2 3 1 2 1 1 1 1 2 Count

3 1 2 1 1 3 2 2 3 Child

 16

3.3.2 Adjust child

 If the child does not conform to JSP problem, we will use the count to

adjust it. The adjust phase is accomplished through the following steps, and

Fig. 3.2 demonstrates an example:

1. The child was produced by crossover and not conformed to JSP problem.

2. Sort the child gene by count and record the original gene position.

3. Select the job which has more than n operations and have the lower count

4. Replace the job which has less operation.

5. According the position to sort the gene and produce child.

Fig. 3.2 shows the example of adjusted child. In the crossover processing,

it produces a child which has four operations for job 3 and two operations for

job 2. This result does not conformed to JSP problem, so we must adjust it.

We used the count to sort the gene and recoded the original gene position.

According the sort result to change from gene position 7 which was job 3 and

have the lower count to job 2. Making every job three operations and sort the

gene based on original gene position.

 17

Fig. 3.2 Example of adjusted child

1 1 1 2 2 2 3 3 3 Parent A

2 0 0 0 1 1 0 1 2 Count

3 3 3 1 1 1 2 2 2 Parent B

2 0 0 0 1 1 0 1 1 Count

1 3 1 1 2 2 3 3 3 Child

2 0 0 0 1 1 0 1 2 Count

1 2 3 4 5 6 7 8 9 Position

1 3 2 2 3 3 1 1 3 Child

2 2 1 1 1 0 0 0 0 Count

1 9 5 6 8 2 3 4 7 Position

1 3 1 1 2 2 2 3 3 Child

1 2 3 4 5 6 7 8 9 Position

1 3 2 2 3 3 1 1 2 Child

1 9 5 6 8 2 3 4 7 Position

Crossover

Sort by count

Change the gene

 18

Chapter 4 The flowchart of Algorithm
Our algorithm divides into two parts. The first part is using the GA’s

solutions to collect knowledge. In this part, there are two phases which are

finds better solution by GA and using the operations table to analysis the

better solution. The second part is using knowledge to improve the GA. This

part was called the knowledge-based GA (KGA). There are three phases

which was different from GA. Those phases are called blended crossover,

forced mutation, and research knowledge.

4.1 Collect knowledge by solution for GA

 If we retain better solution, it will improve the quality of solution by GA.

Therefore, we try to collect some useful information from GA’s solution. But

GA does not demonstrate repeat ability or provide an explanation of how a

solution is developed. On the other hand, those solutions are not stable and

the information of gene different is not available, so we must use operation

table to decide them. This part has two phases and was introduced as

following:

4.1.1 Collect solutions by GA

 In this phase, we used the GA to collect the better solutions. There are

two methods to generate the solutions. The first method was to executed the

GA several times and retain the best solution from each times. But this

method will spend much time to collect solutions. The second method was

executes the GA one times and retain some better solutions. We will set size

 19

of better solutions and collect those in each generation. In case that new

solution better than original solution, we will replace it. The process will be

stopped when the pro-set generation number is reached. The flowchart of

collect solution was shown in Fig. 4.1 and described as following:

Step1: Create initial population.

We used random number to produce some chromosomes. Those

chromosomes were called initial population and must conform to constrain of

the JSP problem.

Step2: Compute fitness value.

 Each chromosome represents one solution. So we transform the

makespan into the fitness value. If the chromosome has lesser makespan, it

will have the higher fitness value.

Step3: Generate new generation.

 When we have initial population and fitness value, we will use those data

to do the next step.

Step4: Select population.

 We use the roulette wheel method to select two chromosomes. In the

roulette wheel, if this chromosome has higher fitness value, it will have higher

probability to be selected.

Step5: Crossover.

 The crossover operator is performed if a randomly generated float

number is less than the crossover rate. In this step, we use the PMX crossover

to do it.

Step6: Mutate.

 The mutation operator is performed if a randomly generated float number

 20

is less than the mutation rate. In this step, we use the inversion mutation to do

it.

Step7: Those chromosomes in this generation is better than retained

solution or not.

 Many chromosomes were produced in each generation. In the generation

1 and generation 2, we will retain all chromosomes as the better solutions.

After generation 3, we use the fitness value of chromosome compare with

those retrained better solutions. If the chromosome has higher fitness value

than that of any retained solutions, the chromosome will replace the better

solution.

Step8: reach the generation number or not.

 If the GA process has haven enough generation number, the algorithm

will be stopped.

4.1.2 Analyze solution to collect knowledge

 We use the GA to collect some better solutions, but we can’t get the

information. So we use the operations table to find attribute combination of

the operation and to evaluate the difference of operation. Besides, analysis

genes which have the certain of attribute combination of each gene position.

The process of analyze the solutions was showed in Fig. 4.1 and described as

following:

Step1: Make the operations table.

 In this step, we must use the attribute combination to decide the

difference of gene for each chromosome. Therefore, four attributions be used

and each attribution has several classes (see section 3.1.1). According those

 21

classes of attribution, we will obtain the attribute combination of operation of

job. Those attribute combination were be recorded in operations table (see

section 3.1.2).

Step2: Transform those better solutions by operations table.

 We use the operations table to code those better solutions.

Step3: Record the attribute combination and occurrence times for the same

position.

 For each gene position, we can collect which attribute combination had

been occurred and it’s occurrence times (see 3.2). Those data which include

the gene position, attribution combination and occurrence times (count) were

called the knowledge. The knowledge will be used in the second part (KGA).

 22

Fig. 4.1 The flowchart of collecting knowledge

4.2 Knowledge-based GA

 Knowledge-based GA (KGA) has three phases that is different from

traditional GA. The first phase is blended crossover. We will reduce the

chance that the knowledge made the solution which fell into the local

minimum easily. We use the two crossover methods to produce child

Start

Compute fitness value

Select chromosome

Crossover

Mutation

New generation

Create initial population

No

Yes

Retain best chromosomes Fitness>now retain

No

Max generation?

Record the attribute
combination of each gene

Operations table

Yes

Knowledge

Analysis the solutions

Collect solutions by GA

Transform those solutions

 23

chromosome. The second phase is forced mutation. We remove the mutation

rate and mutate the child chromosomes which were produced by crossover if

it’s not better than parents. The third phase is to recollect the better solution

and replace the knowledge.

4.2.1 Blended crossover

 Traditional crossover methods randomly select two points to recombine

and produce the child chromosome. Therefore, using random can’t assure the

quality of child. So we use the knowledge to decide the fitness-gene from

parent chromosome and execute the eugenic crossover (see 3.3.1). However,

this crossover can find some optima solution but fall into the local minimum

easily. Based on this reason, we use the PMX crossover to increase the

diversification and try to balance intensification and diversification. It showed

in Fig. 4.2 and described as following:

Step1: Select the crossover operator.

 We use the threshold to choose the crossover operator. If the generation

number is lower than threshold, using eugenic crossover and making this

crossover operator to speed up the convergence rate. And if the generation

number is higher than threshold, using PMX crossover and making this

crossover operator to raise the variation of chromosome. Hope the algorithm

leap from the local minimum.

Step2: Determine if the child is better than parent or not.

 The child that was produced by crossover must be better than one of

parents. If the child better than parents, this chromosome was retained to the

new population. And if the child was not better than one of parents, this

 24

chromosome must be mutated.

4.2.2 Forced mutation

 Traditional mutation operator was executed when the random number is

lower than the mutation rate. In our algorithm, mutation operator was

executed when the child is not better than parents. This process increases the

search space and uses the two-point mutation to do the local search. The

forced mutation was showed in Fig. 4.2 and described as following:

Step1: Mutate the child.

 If the child produced by crossover is not better than one of parents, this

chromosome must be mutated. The mutation operator was to randomly select

two gene positions and exchange these genes.

Step2: Determine if the child is better than parent or not.

 If the child produced by mutation is better than one of parents, this child

was retained to the new population. And if the child was not better than

parents, this child must be re-mutated. This process will be ended when the

child was better than one of parents or the mutation times was higher than the

threshold.

Step3: Determine if the mutation times is higher than threshold or not.

 The mutation times was counted when the child not better than one of

parents by crossover. If the mutation time was not higher than the threshold,

the child must be mutated until the child better than parents. Otherwise, we

must give up this child and select two parents to produce the new child by

crossover again.

 25

Step4: Determine if the crossover times is higher than threshold or not.

 The crossover times was counted when the child had been mutated

several times and had been done crossover. If the crossover times is equal the

threshold, the child was retained to new population. Otherwise, we select two

parents to produce the new child by crossover again.

4.2.3 Collect or replace new knowledge

 In the part 1, we had collected the knowledge. But the knowledge can’t be

used until the KGA is completed because the knowledge help the solution

become better than GA’s. If we still use the past knowledge, the solution will

be limited and can’t find the other better solution in other place. Therefore, we

must retain new better solution in each generation and analyze those to collect

new knowledge. If the algorithm was fall into local minimum, we will refresh

knowledge.

4.2.4 The flowchart of KGA

 Fig. 4.2 shows the flowchart of KGA. We will decide if the knowledge

collected can be used to other JSP problem or not. In the KGA, we can use the

same JSP problem with GA or select different JSP problem to do. The KGA

process was described as following:

Step1: Create initial population.

 We used random number to produce some chromosomes.

Step2: Compute fitness value.

 Transform the makespan into the fitness value. If the chromosome has

lesser makespan, it will have the higher fitness value.

 26

Step3: Generate new generation.

 When we have initial population and fitness value, we will use those data

to do the next step.

Step4: Select population.

 We use the roulette wheel method to select two chromosomes. This step

is the same with GA.

Step5: Crossover.

 In the blended crossover, we must select which crossover operator by

generation number (see 4.2.1). If the child was not better than one of parents,

we must do the mutation.

Step6: Mutate.

 In the forced mutation, we will mutate the child which is not better than

parents in crossover (see 4.2.2).

Step7: Meet the population size or not.

 If this generation has enough population, this generation will be over.

Step8: Compute fitness value.

 In this process, we will compute fitness value of new population and

using new population in the next generation.

Step9: Reach the generation number or not.

 If the KGA process has enough generation number, the algorithm will be

over. Otherwise, continuing the KGA and determine the solution fall into

local minimum or not.

Step10: If the solution fall into local minimum or not.

 If the best solution in each generation had not change several times, we

will determine the solution has fall into local minimum. When the solution

 27

does not fall into local minimum, we will collect the better solution from this

generation. The collecting of the better solution is the same the part 1. If the

solution is better than one of the better solution which was retained, we will

retain this solution until the solution fall into local minimum. When the

solution was fells into local minimum, we will collect new knowledge and

refresh knowledge by new knowledge.

Step11: Refresh population

 When the solution fell into local minimum, we must refresh knowledge.

And this situation was represented this search space that can’t find the better

solution. So we must refresh the population and search other space again. In

the refresh population process, we will sort the original population by fitness

value and selecting the first 20% population to new population. The other new

population was produced by random number.

 28

Fig. 4.2 The flowchart of KGA

KGA

Compute fitness value

Create initial population

New generation

Select parent (wheel)

Eugenic crossover
(use knowledge)

 Parent < child?

Subpopulation?

Mutate

 Parent < child?

Yes
>Threshold

Yes

Yes

No
No

No

Compute fitness value

Yes

Yes

Yes

No

No

Max generation?

Refresh the knowledge
KGA complete

Generation>threshold

PMX crossover

Yes

Blended crossover

Forced mutation

No

>Threshold

No

Fall into local?

No

Yes

Refresh the population
(with knowledge)

Collect knowledge

 29

Chapter 5 Experiential results

In our experiment, we compare with GA. Therefore, we use three

different algorithm processes to do experiment. Those are called KGA*,

KGA** and KGA. KGA* excluded the random effect during the crossover

and mutation steps. Therefore, we use the random number to decide if

crossover or mutation showed be down. If the random number lower than

crossover probability or mutation probability, we will crossover or mutate the

chromosome. GA was run several times to collect knowledge and retains the

every best solution in every run times. KGA** still use random number to

collect crossover or mutation. But the collect knowledge method was to run

GA one time and retains the better solution in each generation. KGA removed

the influence of random number and increased search space by change

population and forced mutation.

The following experiments showed the 6×6 JSP problems solving only

for the purpose of illustrating the computational procedure discussed above.

In the first experiment, we try to establish parameter of GA. Then we used the

best parameter to do the second experiment. In the second experiment, we try

to evaluate the offspring which was produced by eugenic crossover. This

result proved that knowledge is useful in selecting fitness-gene and can

improve the quality of child. However, KGA* must spent much time to

collect knowledge. So we use KGA** to improve the knowledge collecting

speed and found that this method did not influence the result. In the third

experiment, in order to prove the knowledge is useful in finding better

solution, we run different 6×6 JSP cases to compare with GA. Finally,

 30

combining all the result and using KGA to solve the 10×10 benchmark

problem.

5.1 Establish parameter

 In our algorithm, we used the GA to select some better solutions in each

generation. And use those better solutions to collect information for finding

the best solution. Therefore, we used three kinds of crossover probability (Pc)

and four kinds of mutation probability (Pm) to do run experiments. Fig. 5.1 to

Fig. 5.3 displays the results by using crossover probability of 0.6, 0.7 and 0.8.

We find that the result in Fig. 5.3 is better than others, because the astringency

is better in each mutation probability. When mutation probability is 0.2, the

astringency is better and can find the best solution first. According to this, we

decided to use 0.8 and 0.2 for crossover probability and mutation probability

respectively.

555
560
565
570
575

1 100 200 300 400 500
Generation

M
ak

es
pa

n Pm=0.05

Pm=0.1

Pm=0.2

Pm=0.3

Fig. 5.1 Crossover probability = 0.6 (GA)

 31

555

560

565

570

575

1 100 200 300 400 500
Generation

M
ak

es
pa

n
Pm=0.05

Pm=0.1

Pm=0.2

Pm=0.3

Fig. 5.2 Crossover probability =0.7(GA)

555

560

565

570

575

1 12 100 200 300 400 500
Generation

M
ak

es
pa

n Pm=0.05

Pm=0.1

Pm=0.2

Pm=0.3

Fig. 5.3 Crossover probability =0.8(GA)

5.2 Evaluate offspring

 KGA* used the information that we obtained from GA to evaluate which

gene is better and can be reserve as offspring in the same position by

crossover operator. Therefore, we try to evaluate whether those information

be used by KGA* can bring the better offspring or not. In this

experimentation, we joined the KGA** to assure that using information can

make our offspring better than that of GA. The process of KGA** is the same

as KGA*, but it collected information from each generation by run GA one

time and reduces more processing time than KGA*. Table 5.1 shows the

probability that offspring better than parents in crossover step. Superior rate is

the percentage that offspring better than both parents and improving rate is

 32

offspring equal or better than one of parents. We can find that using KGA* or

KGA** are all better than GA in Superior rate. But, the Superior rate of

KGA* is very close to KGA**. This result shows that using our algorithm can

bring the better offspring in crossover step. But the KGA** can reduce the

knowledge collecting time as it run GA one time only.

Table 5.1 Offspring evaluation

 GA KGA* KGA**

Number of total offspring 17628 17620 20043

Number of superior offspring 9197 10472 11819

Number of improving offspring 4361 1645 2392

Superior rate 52.17 % 59.43 % 58.97 %

Improving rate 24.74 % 9.33 % 11.93 %

After evaluating offspring, we can assure that our knowledge is useful.

Therefore, we must test whether the knowledge used in the JSP problem is

useful or not. Fig. 5.4 shows the solutions of the JSP problem be run 200

times for KGA* and KGA**. Based on the result, we know the knowledge is

useful in providing gene selection information which leads to better solution.

According to the result, we find that KGA* and KGA** are very close for the

200 times trials. Therefore, we use the KGA** to as the collecting knowledge

method because it save collecting time.

 33

0

50

100

150

200

250

52 53 54 55

Makespan

T
im

es KGA*

KGA**

GA

Fig. 5.4 The result of KGA*, KGA** and GA (run 200 times)

5.3 Compare with GA

 This algorithm used some better solutions from GA to collect the

knowledge and used the knowledge to generate better offspring in crossover

step. Based on the idea, we suppose that using our algorithm can bring better

solution than GA or its convergence may be faster than GA. In the next

experiment, we will compare the performance of KGA** with GA on the two

6×6 randomly produced JSP problems.

This experiment solved those problems by KGA** and GA. According to

the results, we have two conclusions. Firstly, the algorithm (KGA**) have the

faster convergence than GA whether both method could reach the same

minimum makespan. Secondly, the different of convergence time is larger

when the minimum makespan is larger. The makespan of case 1 (see Fig. 5.5)

and case 2 (see Fig. 5.6) are 464 and 619. We assure that our algorithm can

find the same makespan with GA, but we can find the makespan in the 5 and

15 generation. And the generation number is lesser than GA’s more. Based on

the result, we can prove that our algorithm have faster convergence. Besides,

when the problems have larger makespan, the algorithm must spend much

 34

time to find the minimum makespan. But the search speed of KGA** is faster

than GA.

455

460

465

470

475

480

1 2 4 5 7 17 32 100 200 300 400 500
Generation

M
ak

es
p
an KGA**

GA

Fig. 5.5 Makespan of case 1

600

610

620

630

640

650

1 2 15 59 99 344 413 500
Generation

M
ak

es
pa

n

KGA**

GA

Fig. 5.6 Makespan of case 2

5.4 10×10 Benchmark problem

 Based on the prevent results, we know that our algorithm can make the

convergence faster. But it may fall into the local minimum easily. The study

of Michalewicz [29], Jain and ELMaraghy [2] showed that the setting of

parameters may performance of algorithm in different problem. Therefore, we

establish the KGA algorithm by excluded the parameters (mutation

probability and crossover probability) from the KGA**. In this method, the

offspring is generated by crossover and this method uses the mutation to do

local search. In the blended crossover, we blended the PMX crossover and

 35

eugenic crossover into process. We used the eugenic crossover to do the first

several generations and used the PMX crossover in the rest generation to skip

over the local minimum. To sum up, this method may skip over the local

minimum and help it convergence fast. Besides, if the child chromosome is

not better than one of parents, it will proceed to forced mutation process until

it become better than parents or the times is more than 30. This forced

mutation process will help the algorithm to do the local search. Beside, if the

algorithm fell into local minimum, we will refresh the population and refresh

the knowledge by recollect in KGA process.

700

900

1100

1300

1

9

27 70 16
1

20
6

23
5

30
6

34
0

51
3

64
5

84
5

11
56

11
68

30
00

54
15

70
00

Generation

M
ak

es
pa

n

GA

KGA

Fig. 5.7 The makespan of the 10×10 benchmark problem

 In this experiment, we use KGA for the 10×10 benchmark problem. This

problem was generated by Fisher and Thompson [27]. Lawler et al. [11]

report that within 6000s when applying a deterministic local search to this

problem and find more than 9000 local optima. It is perceived that this

problem has the difficult to find the optimal solution. Besides, Carlier and

Pinson [14] proved that the optimal makespan is 930. We can use this result to

determine whether the solution by KGA is good or not. Fig. 5.7 shows the

result by GA and KGA. In this figure, the best solution by KGA is 936 and by

 36

GA is 1053. And it just spent 440 generations to find the makespan 964. This

result proved that KGA had faster convergence than GA and its result better

than GA. Table 5.2 shows the progress of the 10×10 benchmark instance.

According to this table, we can know that we did not find the optimal

makespan, but the solution by our algorithm is very close the optimal

makespan.

Table 5.2 Progress of the 10×10 benchmark instance
Researchers who achieved

solution
Makespan Researchers who achieved

solution
Makespan

Fisher and Thompson(1963) 1101 Lageweg(1982) 935

Balas(1969) 1177 Fisher et al.(1983) 1084

Schrage(1970) 1156 Lageweg(1984) 930

Florian et al.(1971) 1041 Barker and McMahon(1985) 960

Bratley et al.(1973) 980 Adams et al.(1988)(sbII) 930

McMahon and Florian(1975) 972 Carlier and Pinson(1989) 930

Lageweg et al.(1977) 1082

These results are achieved from experiments performed by Jain and Meeran [4]

 Fig. 5.8 shows the makespan for KGA for 100 time trial. We can find that

most of the solutions fall into the range between 960 and 969. This result can

represent our algorithm is steady. And the best solution by KGA is 936. This

solution is not the optimum solution, but it is close the optimum solution. For

those result, we can prove KGA is useful and using the knowledge can

improve the quality of solution.

 37

0
10

20
30

40
50

60

93
0-

939

95
0-

959

97
0-

97
9

99
0-

99
9

10
10

-1
01

9

10
30

-1
03

9

10
50

-1
05

9

10
70

-1
07

9

10
90

-1
09

9

11
10

-1
11

9

11
30

-1
13

9

11
50

-1
15

9

Makespan

T
im

es
GA

KGA

Fig. 5.8 The makespan for KGA (run 100 times)

 38

Chapter 6 Conclusions and discussions
This paper has presented a theoretical and experimental study of the KGA

process and concept. KGA is an algorithm which was used the knowledge to

improve the deficiency of GA. Therefore, retaining some better solutions

from GA and evaluate those to collect knowledge. The knowledge will be

used in crossover operator and the KGA process. However, if we still use the

random number to decide if crossover showed be downed or not, it will make

our algorithm unsteadily. And the parameters could not be used in each case.

So we use the child to decide whether crossover or mutation should take place

and used knowledge to speed up the convergence. Further, we want to avoid

the chance that knowledge will make the solution fall into local minimum

easily. In the KGA, we used two crossover operators to do it. Knowledge was

used in eugenic crossover to increase the intensification. The PMX crossover

was used to increase the diversification. And forced mutation process uses the

simple change to do local search. If the solution fell into local minimum, we

will refresh the knowledge and population.

According to those experiments, we can obtain some conclusions. The

first, the knowledge is useful. In the eugenic crossover, the knowledge was

used to evaluate the fitness-gene and retained the higher fitness-gene in

offspring. This method can raise the quality of offspring and produce better

offspring. Based on this result, the knowledge is useful in provide the gene

selection information. But this method will make the algorithm fall into local

minimum easily. This is because when we can find the better solution than

GA, the knowledge becomes useless. Therefore, the knowledge must be

 39

renewed in KGA process. The second, this algorithm can raise the

convergence. Because the algorithm used the knowledge to improve the

crossover, it will be leaded to search the specific space. For this reason, the

method could search out the better offspring in short time and raised the

convergence.

The third, the algorithm can balance the intensification and diversification.

This algorithm used the knowledge to search special space and improve the

convergence. Therefore, this method achieves the intensification which makes

the algorithm to search the space where better solution exists. But if the

algorithm did not have enough diversification, it could not find better solution

and fall into local minimum completely. So the mutated process and refreshed

population were used in KGA. Using the forced mutation to do the local

search and to find other new solution neighbored on the better solution. And

when no better solution could be found better in several generations, the

population must be renew so that search other space. Based on the KGA result,

we can find the better solution better than GA and achieve to balance between

intensification and diversification. The fourth, the KGA is steady. In the

10×10 JSP problem, although we can’t find the optimum solution, we can find

the solution which is close to optimum solution. And those solutions which

were found by KGA are steadily. Because the solutions are center on certain

space and very close the optimism solution. For those reasons, we can prove

our algorithm (KGA) is useful and may be used in other optimum problem.

 In the future, we can modify the two points. The first, we can use other

the algorithm to collect knowledge. As GA can’t find the optimal solution, if

we can use other algorithm to collect knowledge, the knowledge may be

 40

better than now. The second, we use the simple statistic to count the

occurrence times. Some statistic method could be used in inference more

sophisticated the result. Those points may be help the KGA become more

solid.

 41

Reference
1. A. Colorni, M. Dorigo, V. Maniezzo and M. Trubian, “Ant system for

Job-shop Scheduling”, Statistics and Computer Science, vol. 34, pp.39-53,
1994.

2. A. K. Jain and H. A. Elmaraghy, “Production Scheduling / Rescheduling
in flexible manufacturing”, International Journal of Production Research,
vol. 35, pp. 281-309, 1997.

3. A. S. Jain and S. Meeran, “Job-Shop Scheduling Using Neural Networks”,
International Journal of Production Research, vol.36, No.5, pp.1249-1272,
1998.

4. A. S. Jain and S. Meeran, “Deterministic job-shop scheduling: Past,
present and future”, European Journal of operational research, vol.13, pp.
390-434, 1999.

5. C. Dirk Mattfeld and Christian Bierwirth, “An efficient genetic algorithm
for job shop scheduling with tardiness objectives”, European journal of
operational research, vol. 155, pp.616-630, 2004.

6. D.A. Koonce and S.-C. Tsai, “Using data mining to find patterns in
genetic algorithm solutions to a job chop schedule”, Computers &
Industrial engineering, vol.38, pp.361-374, 2000.

7. E. Falkenauer, S. Bouffoix, “A genetic algorithm for job shop”, Proc. of
the 1991 IEEE international Conference on Robotics and Automution,
1991.

8. E. Nowicki, C. Smutnicki, “A Fast Taboo Search Algorithm: for the Job
Shop Problem”, Managemenr Science, vol. 42, pp. 797-813, 1996.

9. D.E. Goldberg, “Genetic Algorithms in Search”, Optimization, and
Machine Learning, Addison-Wesley, USA, 1989.

10. D. Goldberg, R. Lingle Alleles, “Loci and the traveling Salesman
Problem”, Proceedings of the First International Conference on Genetic
Algorithms, pp. 154-163, 1985.

11. E.L. Lawler, J.K. Lenstra and Rinnooy Kan etc., ”Sequencing and
scheduling: Algorithms and complexity”, Hardbook in operations
research and management, 1993.

12. G. Syswerda, “Uniform crossover in genetic algorithms”, Proceedings of
the Third International Conference on Genetic Algorithms, pp. 2-11,
1989.

13. G. Syswerda, “A study of reproduction in generational and steady-state

 42

genetic algorithms”, foundations of Genetic Algorithms, pp. 94-101,
1991.

14. J. Carlier and E. Pinson, “An algorithm for solving the job shop problem”,
Management science, vol. 35, pp.164-176, 1989

15. J. F. Goncalves, M. Mendes, and Maurício G.C. resende, “A hybrid
genetic algorithm for the job shop scheduling problem”, European journal
of operational research, vol. 167, pp.77-95, 2005.

16. K. Morikawa, T. Furuhashi, Y. Uchikawa., “Single Populated Genetic
Algorithm and its Application to Job-shop Scheduling”, Proc. of
Industrial Electronics, Control, Instrumentation, and Automation on
Power Electronics and Motion Control, pp. 1014-1019, 1992.

17. L. Davis, “Applying adaptive algorithms to epistatic domains”,
Proceedings of the International Joint Conference on Artificial
Intelligence, pp. 162-166, 1985.

18. L. Davis, “Applying adaptive algorithms to epistatic domains”, In Proc.
of the Inter. Joint Con5 on Artificial Intelligence, pp. 162-164, 1985.

19. M, Gen and R. Cheng, “Genetic algorithms and engineering design”,
New York: John Wiley & Sons, 1997.

20. M. Watanbe, K. Ida, and M. Gen, “A genetic algorithm with modified
crossover operator and search area adaptation for the job-shop scheduling
problem”, Computers & Industrial Engineering, vol. 48, pp.743-752,
2005.

21. M. Garey, D. Johnson and R. Sethi, “The complexity of flow shop and
job shop scheduling”, Maths Ops Res, vol.1, pp.117-129, 1976.

22. M. Kolonko. Some new results on simulated, “annealing applied to the
job shop scheduling problem”, European Journal of Operational Research,
pp. 123-.136, 1999.

23. P.C. Chang, J.C. Hsieh and C.H. Hsiao, “Application of genetic algorithm
to the unrelated parallel machine scheduling problem”, Chinese industrial
of Industrial Engineers, vol. 19, pp.79-95, 2002.

24. R. Cheng, M. Gen, and Y. Tsujimura. “A tutorial survey of job-shop
scheduling problems using genetic algorithms---I:Representation”.
Computers ind. Engng vol. 30, No. 4, pp.983-997, 1996

25. R. Cheng, M. Gen, and Y. Tsujimura. “A tutorial survey of job-shop
scheduling problems using genetic algorithms--- II: Hybrid genetic search
strategies”. Computers & Engineering, vol. 36, pp.343-364, 1999

26. V.L. PJM, A. EHL, and L. JK, “Job shop scheduling by simulated

 43

annealing”, Operations Research, 40, pp.113-125, 1992.
27. W. K. Fisher, E.O. Thompson, “Amino acid sequence studies on sheep

liver fructose-bisphosphatase. II. The complete sequence”, Aust J Biol
Sci., vol. 36, pp. 235-250, 1983.

28. X. Li, W. Liu, S. Ren, and X. Wang, “A solution of job-shop
scheduling .problems based on genetic algorithms”, IEEE Intemational
Conference on Systems, Man, and Cybernetics, vol. 3, pp. 1823 -1828,
2001.

29. Z. Michalewicz and M. Schoenauer, “Evolutionary algorithms for
constrained parameter optimization problems”, Evolutionary
Computation, vol. 4, pp. 1-32, 1996.

