
A Novel Algorithm for Broadcasting in Multiple Channel Mobile Environment 25

A Novel Algorithm for Broadcasting in Multiple

Channel Mobile Environment

Guang-Ming Wu1, and Derchian Tsaih2
1 Department of Information Management, Nan-Hua University

2 Department of Electronic Commerce Management, Nan-Hua University

ABSTRACT

Broadcast is an efficient and scalable method for resolving the bandwidth limitation in a wireless
environment. In many applications, mobile clients might need more than one data item. However, most
previous researches on query-set-based broadcasting are restricted to a single broadcast channel
environment. The results are limited applicability to the upcoming mobile environments. In this paper,
we relax this restriction and explore the problem of query-set-based broadcasting in multiple broadcast
channels. In multi-channel query-set-based broadcasting, we discover data collision (two data items in
the same query set are arranged on two channels at the same time slot) is an important factor to affect
users’ access time. In this paper, we introduce the new data collision problem motivated by
multi-channel query-set-based broadcasting environment. We then present a two-stage scheme of data
partitioning and data matching to solve the new data collision problem. Experiments are performed to
justify the benefit of our approach.
Index Terms—Access time, data broadcast, mobile environment, multi-channel, query-set-based

broadcasting.

1. Introduction

Recent advances in computer hardware
technology have made possible the
production of small computers, like PDAs
and notebooks, which can be carried around
by users. These small computers can be
equipped with wireless communication
devices that enable users to access global
data services from any location. In a wireless

environment, there are two kinds of
communications between a server and the
mobile clients. One is broadcasting and the
other is request-and-reply. Due to restrictions
on bandwidth and energy, in wireless
environment the broadcasting method is
preferred [11].

Two important factors must be considered
in a broadcast-based information system,

26 資訊管理研究

access time [1, 3, 13, 16, 21, 24, 25] and
tuning time [5, 7, 10, 17]. The access time is
the time elapsed from the moment a client
device submits a query into the broadcast
channel to the moment the desired data are
acquired. This is the total time a client device
must spend and is often used to evaluate the
performance of the broadcast system. The
tuning time is the time spent by the client
listening to the broadcast channel. When the
clients are listening to the data in the
broadcast channel, the clients are in the
active mode. Therefore, the tuning time is
often used to evaluate the power
consumption of the clients. The aim of our
paper is to reduce the access time through
intelligent organization of the broadcast data.

Many approaches have been proposed to
reduce the access time [1, 2, 4, 8, 9, 14, 18,
20]. In these papers, a single broadcast
channel is used to broadcast data items in
different frequencies according to their
relative access rates. Note that, there exist
situations where multiple low-bandwidth
physical channels cannot be combined into a
single high-bandwidth physical channel [19,
22]. In the multi-channel environment, the
system can schedule data items on multiple
channels [19, 22]. In addition, several
network standards, such as FDMA-based
systems, divide the network bandwidth into
several physical channels where individual

mobile clients listen to one channel at a time.
Furthermore, most of the previous

approaches assume that each mobile client
needs only one data item. They do not
consider the relationship between data
objects when a query contains more than one
data item. However, in many situations, a
mobile client might need more than one item
of data. [3, 8, 15, 23] proposed scheduling
methods for single channel query-set-based
data broadcasting. These works studied on
broadcasting dependent data are restricted to
a single broadcast channel environment. The
results are limited applicability to the
upcoming mobile environment. To view of
this, in this paper, we explore the
query-set-based broadcast problem in
multiple broadcast channels. In multi-channel
mobile environment, the data items must be
scheduled in the channels. Data collision
occurred when two data items are transmitted
to a mobile client on two different channels
at the same time slot. Since the mobile client
can only listen to a channel at the same time
to access one of the data items, data collision
forces the mobile client to wait for another
until next broadcast cycle. This leads to an
increase of the client’s access time and the
length of the access time are certain to
exceed one broadcast cycle length. To reduce
the number of data collisions, an intelligent
idea is partitioning the data items which are

A Novel Algorithm for Broadcasting in Multiple Channel Mobile Environment 27

in same query set into the same channel.
Therefore, this is an important work to
develop a good partition method to reduce
the dependent data items (data items in the
same query set) into different channels.

In this article, we introduce a new data
collision problem motivated by multi-channel
mobile environment. For the data collision
problem, we investigate an efficient
partitioning method. Our partitioning
algorithm can partition all data items into K
channels and reduce the data collision
probability. Following the partitioning, we
propose a matching based method to decide
which data items (partitioned in different
channels) will be broadcasted in the same
time slot and minimize the number of data
collisions. In the matching algorithm, we first
transfer the matching problem into a
maximum flow problem. Next, we applied
the maximum bipartite matching technique
which derived from the Ford-Fulkerson
method [6] to reduce the number of data
collisions. Experimental results show that our
algorithm can reduce the number of data
collisions required for queries efficiently.

The remainder of this paper is organized as
follows. Section 2 formulates the data
collision problem in broadcast environment.
Section 3 proposes our two-stage algorithm.
Section 4 reports the experimental results.
Finally, conclusions are given in Section 5.

2. Problem Formulation

Figure 1 shows an example system
architecture of a data broadcast system which
broadcasts data items periodically according
to a broadcast scheduling. We assume that
there are K channels in a broadcast area, each

denoted Ci, 1 ≤ i ≤ K. A database is made up
of N unit-sized items, denoted dj, 1 ≤ j ≤ N.
Each item is broadcasted on one of the

channels, so Ci broadcasts Ni data items 1 ≤ i

≤ K, ∑
=

=
K

i
i NN

1

. Let L be the length of the

broadcast program. L is equal to 





K
N

. We

assume that N = K×L without loss of
generality. Each channel broadcasts its data
items periodically according to a broadcast
scheduling. Please see figure 1. A broadcast
scheduling is an arrangement of all data items
D on K broadcast channels and every data
item appears in exactly one position on one
of the channels.

Let Q = {q1, q2, …, qM} be a set of M
query patterns whose data set and frequency
(or weight) are denoted by QDS(qi), and freq

(qi), 1 ≤ i ≤ M. Let D = {d1, d2, …, dN},
denote the union of the data items of Q, that

is, D = U
Mi

iqQDS
≤≤1

)(.

28 資訊管理研究

Figure 1: An architecture of a multi-channel wireless broadcasting system.

Example 1: As shown in figure 2, consider
a database D containing eight data items, D =
{d1, d2, …, d8}. Assume that there are two
channels on server. Data items d1, d2, d5, and
d8 are partitioned into channel 1 and d3, d4, d6,
and d7 are partitioned into channel 2. The
broadcast ordering of channel 1 is <d1, d5, d8,

d2> and channel 2 is <d4, d7, d6, d3>. There
are four queries in Q, Q = {q1, q2, q3, q4}.
Suppose QDS(q1)={d1, d4}, QDS(q2)={d2, d6},
QDS(q3)={d5, d8}, and QDS(q4)={d3, d7}. D

= U
41

)(
≤≤i

iqQDS .

Figure 2: An example of a broadcast program. There are two channels and eight data items.

d1 d5 d8 d2 d1 d5 d8 d2

d4 d7 d6 d3 d4 d7 d6 d3

current broadcast cycle next broadcast cycle

channel 1

channel 2

Scheduler

Database

Q
ueries

Mobile client

data
…

Server

push channel 1

uplink channel

push channel K

A Novel Algorithm for Broadcasting in Multiple Channel Mobile Environment 29

Given two data items di and dj, if {di, dj} ⊂
QDS(qk) and di and dj are scheduled in the
same time slot of two different channels. We
call that a data collision (DC) occurred in
QDS(qk), denoted by di ≅ dj. As shown in
example 1, {d1, d4}⊂ QDS(q1), and d1 and d4
are scheduled in the same time slot of
channel 1 and channel 2, respectively.
Therefore, d1 ≅ d4, and there is a DC in
QDS(q1). Since a mobile client can only
listen to one channel at the same time, one of
the data items, d1 or d4, can be accessed in
current broadcast cycle and the other one
must be waited until next broadcast cycle. It
is thus evident that a DC will lead to an
increase of a client’s access time.

Theorem 1: Given a broadcast scheduling
and two queries qi and qj, if query qi has a DS
in its QDS and query qj’s QDS is not
occurred any DS, then the qi’s access time is
longer than the qj’s access time.

Proof: Figure 3 shows a broadcast
scheduling. If QDS(qi)={di1, di2, di3, di4, di5},

and di2 ≅ di5. The shaded box represents a
complete cycle time. (The length of the
shaded box is equal to L.) The left border of
the box represents the start time of a client
that submits the query qi to access data items.
However we slide the box to anywhere (a
client start turning on a channel anywhere),
the box will cover all data items one time
exactly. The data items which do not induce a
DC can be accessed during the box (time=L),
i.e. di1, di3, and di4 can be accessed. But di2 ≅
di5, therefore, the client will select one of
channels to receipt di2 or di5 at the time. The
other data item will receipt until next
broadcast cycle. Therefore, the qi’s access
time is longer than L. Oppositely, given a
query qj, if all data items in qj are not
inducing any a DS. The box will cover all qj’s
data items during one length of a cycle time
and receipts them. Therefore, the access time
of qj is less than L. So the qi’s access time is
longer than the qj’s access time.

Figure 3: An example of data broadcast scheduling. It shows the negative influence on access time of a

query by a DC.

next broadcast cycle

channel 1 data stream
channel 2 data stream

start of query qi

current broadcast cycle

di2di1

di4 di5

di3 di2di1

di4 di5

di3

completion of query qi

… … …
…

…
…

… … …
…

…
…

30 資訊管理研究

By the theorem 1, hence, this is an
important issue to reduce the number of DCs
in a multi-channel data broadcast program.

Data Broadcast Collision Problem
(DBCP): Given a set of query patterns Q =
{q1, q2, …, qM} with their frequencies
(weights), the data broadcast collision
problem is to find an optimal broadcast
schedule which minimizes total data
collisions of the query patterns.

3. Our Approach

In this section, we present an algorithm for
DBCP. Our scheduling algorithm consists of
two stages: the partitioning followed by the
matching.

3.1 Partitioning Algorithm for the DBCP

To obtain an efficient initiation, we use a
partition algorithm that partitions all data
items into K channels. The objective is to
reduce the data collision probability. The
main idea is described as follows: if two data
items di and dj belong to the same QDS, we
will partition di and dj into the same
broadcast channel as far as possible. Then the
two data items will not induce a DC.
Otherwise, if di and dj are partitioned into
different channels, maybe di and dj will be
scheduled in the same time slot and inducing
a DC. We called this is a tended data

collision (TDC). When two data items occur
to a TDC, they will possible be a DC in a
data broadcast scheduling. In other words, if
two data items belong to the same QDS and
they are not a TDC, then they do not lend to a
DC.

Given a set of weighted queries Q = {q1,
q2, …, qM} whose union of QDSs is D = {d1,
d2, …, dN}, it can be modeled by a graph G =
(V, E), called query graph, where V
represents the data items and the edge set E
represents which two data items belong to the

same query. E = {ei,j | di ∈ QDS(qk) and dj ∈
QDS(qk), where qk ∈ Q }. Let wi,j denote the

weight of edge ei,j. wi,j = ∑)(kqfreq , if {di,

dj}⊂QDS(qk). For example, given a database
D containing six data items d1, d2, …, d6, if
there are three queries q1, q2, and q3. Assume
that QDS(q1) = {d1, d2, d5}, QDS(q2) = {d1, d5,
d6}, QDS(q3) = {d2, d3, d4, d5}, and ferq(q1) =
ferq(q2) = ferq(q3) = 1. We can represent it by
the graph G = (V, E) as shown in the figure 4.
V = {v1, v2, …,v6} and E = {e1,2, e1,5, e1,6, e2,3,
e2,4, e2,5, e3,4, e3,5, e4,5, e5,6}. Because of {d1, d5}

⊂ QDS(q1) and {d1, d5} ⊂ QDS(q2), w1,5 =
ferq(q1) + ferq(q2) = 2. Similarly, w2,5 =

ferq(q2) + ferq(q3) = 2 because of {d1, d5} ⊂
QDS(q2) and {d1, d5} ⊂ QDS(q3). The
weights of the other edges are equal to 1.

A Novel Algorithm for Broadcasting in Multiple Channel Mobile Environment 31

Figure 4: Graph modeling for weighted query set.

Let |V| denote the number of vertices in V.
The partitioning problem is dividing V into K
sets (K channels) V1, V2, …, VK, where

Vi ∩ Vj = ∅, i ≠ j
| Vi | = | Vj |, 1≤i, j≤K

U
K

i i VV
1=

=

Partition is also referred to as a cut. The
cost of partition is called the cut-size, which
is the total weight of edges crossing the cut.
A cut-size represents the number of TDCs
among queries. Let Ci,j be the cut-size
between partitions Vi and Vj. The objective of
the partitioning problem minimizes

∑∑
= =

K

i

K

j
jiC

1 1
, , where i≠j.

Multiway partitioning can be normally
reduced to a series of two-way or

bipartitioning problem. Each component is
hierarchically bipartitioned until the desired
number of components is achieved. In this
paper, we will restrict ourselves to
bipartitioning. We call the partitioning
process is bisectioning and the partitions are
bisections.

Based on KL algorithm [12], we propose a
bipartition algorithm in the following. In this
bipartitioning algorithm, we start by initially
partitioning the graph G = (V, E) into two
subsets of equal sizes. Vertex pairs are
exchanged across the bisection if exchange
improves the cutsize. The above procedure is
carried out iteratively until no further
improvement can be achieved.

Consider the query graph given in figure 4.
The initial partitions are V1 = {v1, v2, v3} and

v1

v6

v3

v4

v5

v2

1

1

1

1

2
2

1

1

1

1

32 資訊管理研究

V2 = {v4, v5, v6}. (It is shown in figure 5(a).)
Notice that the initial cutsize is 8. The next
step of the algorithm is to choose a pair of
vertices whose exchange results in the largest
decrease of the cutsize or results in the
smallest increase, if no decrease is possible.
The cost reduction for moving vertex vi,
denoted by Di. Di is defined as

Di = Ei - Ii,
where Ei is the total cost of edges of vertex vi

that cross the bisection boundary (if vi ∈ V1,

Ei = ∑
∈ 2

,
Vv

ix
x

w) and Ii is the total cost of edges

of vertex vi that do not cross the boundary (if

vi ∈ V1, Ii = ∑
∈ 1

,
Vv

ix
x

w). If vi and vj are

exchanged, the decrease of cost is
Gvi,vj=Di+Dj-2wi,j. In the example given in

figure 5(a), for vertex v1, E1 = w1,5 + w1,6 =
2+1 = 3, I1= w1,2=1, D1=3-1=2. Similarly, for
vertex v4, E4=1+1=2, I4=1, D4=2-1=1. In this
example, this is a suitable vertex pair, (v1, v4),
which decreases the cutsize by 3 (Gv1,v4 =

D1+D4-2w1,4 =2+1-0=3). A tentative
exchange of this pair made. Figure 5(b)
shows the result of the tentative exchange.
Let gi denote the decrease of ith tentative
exchange. Therefore, g1 is equal to 3. These
two vertices are then locked. (The locked
vertices represented by shaded nodes.) This
lock on the vertices prohibits them from

taking part in any further tentative exchanges.

If vi∈V1 and vj∈V2 are interchanged, then the
new D-values, D’, are given by

Dx’ = Dx +2wx,i – 2wx,j, ∀vx∈V1-{vi}
Dy’ = Dy +2wy,j – 2wx,i, ∀vy∈V2-{vj}
The above procedure is applied to the new

partitions, which gives a second vertex pair
of (v2, v6). This procedure is continued until
all vertices are then locked. Figure 5(c) and
5(d) shows the results of the second and third
tentative exchanges, respectively. During this
process, a log of all tentative exchanges and
the resulting cutsizes is stored. Table 1 shows
the log of vertex exchanges for the given
example. Let psk denote the partial sum of
cutsize decrease over the exchanges of first k

vertex pairs, psk =∑=

k

i ig
1

. Note that the

ps-values are given in the column 4 of the
table, e.g., ps1 =3, ps2 =2 and ps3 =0. The
value of k for which psk gives the maximum
value of all partial sum is determined from
the table. In this example, k=1 and ps1 =3 is
the maximum partial sum. The first k pairs of
vertices are actually exchanged. In this
example, the first vertex pair (v1, v4) is
actually exchanged, resulting in the bisection
shown in figure 6. This completes an
iteration and a new iteration starts. However,
if no decrease of cutsize is possible during an
iteration, the algorithm stops. Table 2 shows

A Novel Algorithm for Broadcasting in Multiple Channel Mobile Environment 33

the log of the second iteration. The maximum
partial sum is equal to 0. Therefore, no vertex
is exchanged and the bisection in figure 6 is

the final bisection. The algorithm is
summarized in figure 7.

Figure 5: (a) The initial bisection. (b) The result of the first tentative exchange which exchange vertices v1

and v4. (c) The result of the second tentative exchange. (d) The result of the third tentative
exchange.

v1

v6
v3

v4

v5v2

11 1

1

2
2

1 1

1

1

cutsize=8

v4

v6 v3

v1

v5 v2

1
1

1

1

2

2

1

1

1

1

cutsize=5

v4

v2v3

v1

v5v6

1
1

1

2

1

2

1

1

1

1

cutsize=6
v4

v2 v5

v1

v3 v6

1
1

1

1 1

2

1

2

1

1

cutsize=8

(a) (b)

(c) (d)

34 資訊管理研究

Figure 6: The final partitions of figure 5.

i Vertex Pair gi psi Cutsize
0 - - - 8
1 (v1, v4) 3 3 5
2 (v2, v6) -1 2 6
3 (v3, v5) -2 0 8

Table 1: The log of the vertex exchanges. (Iteration 1.)

 i Vertex Pair gi psi Cutsize
0 - - - 5
1 (v2, v6) -1 -1 6
2 (v1, v4) -1 -2 7
3 (v3, v5) 2 0 5

Table 2: The log of the vertex exchanges. (Iteration 2.)

v4

v6v3

v1

v5v2

1
1

1

1

2

2

1

1

1

1

cutsize=5

Partition V1 Partition V2

A Novel Algorithm for Broadcasting in Multiple Channel Mobile Environment 35

Algorithm Partitioning (G)
Input: G(V,E), |V|=2n
Output: Balanced bi-partition V1 and V2

with small number of TDCs

1 Random bipartition V into V1 and V2

such that |V1|=|V2|, V1∩ V2=∅,and V1∪
V2=V;

2 repeat

3 Compute Dj, ∀vj∈V;
4 For i = 1 to n
5 Find a pair of unlocked

vertices vxi∈V1 and vyi ∈V2

whose exchange with largest
Gxi, yi;

6 Exchange and mark vxi and
vyi as locked, store the gain

gi;

7 Compute the new Dj, for all

unlock vj∈V;

8 Find k, such that psk =∑
=

k

i
ig

1

is

maximized;

9 if psk > 0 then
10 Move vx1, vx2, …, vxk, from

V1 to V2, and vy1, vy2, …, vyk,

from V2 to V1;

11 Unlock v, ∀v∈V;
12 Until psk ≤ 0.
Figure 7: The partition algorithm for DBCP.

3.2 Matching Algorithm for the DBCP

Following the partitioning, a matching
based method is applied to decide which
two data items (partitioned in different
channels) will be broadcasted in the same
time slot. The matching algorithm has to
minimize the number of data collisions. As
the example shown in figure 2, it has given
us a picture of how the mismatching of
data items d1 and d4 on the broadcast
sequences could increase the access time of
the client. In this subsection, we applied
the maximum bipartite matching technique
to reduce the number of DCs.

The maximum bipartite matching
technique [6] is a well known method that
derived from the Ford-Fulkerson method to
find the maximum flow in a flow network.
In order to transform the DBCP to the
maximum bipartite matching problem, we
consider the output of the partition
algorithm as a bipartite network. Given a
graph G = (V, E) that is output from the

partition algorithm, where V= V1∪ V2 and
V1∩ V2=∅. We construct the corresponding
flow network G’ = (V’, E’) for the bipartite
graph G as follows. We let the source s and
sink t be new vertices not in V, and we let

V’= V∪{s, t}. The directed edges of G’ are
generated by the following rules:

36 資訊管理研究

R1: If there are two vertices vi∈V1,
vj ∈V2 and ei,j ∉ E, then we
add an edge ei,j into E’ with
unit capacity.

R2: ∀ vi∈V1, we add an edge es,i
into E’ with unit capacity.

R3: ∀ vj∈V2, we add an edge ej,t
into E’ with unit capacity.

All edges have only one capacity. This
made sure that one unit capacity were

shipped from a vertex vi∈V1 to a vertex
vj∈V2 at most. In other words, a vertex
vi∈V1 is matched to a vertex vj∈V2 at most.
Similarly, a vertex vj∈V2 is matched to a
vertex vi∈V1 at most. Rule R1 creates en

edge between two vertices vi and vj if they
do not induce a TDC, and gives unit
capacity to the edge. Therefore, in the
flow-based algorithm, vi and vj can be
matched together and have no DC
occurring. That is to say, if vi and vj
inducing to a TDC, rule R1 avoids the two
vertices matching together and inducing a
DC. As shown in figure 8(a), this is the
output of figure 5, vertices are partitioned
into two sets V1 = {v2, v3, v4} and V2 = {v1,
v5, v6}. There are five TDCs between V1
and V2. Figure 8(b) shows the flow
network which is corresponding to the
bipartite graph of figure 8(a).

Figure 8 (a) Bipartite graph G = (V, E), where V is partitioned into two sets V1 and V2. (b) The
corresponding flow network G’ = (V’, E’).

Apply the Ford-Fulkerson method [6] on the flow network G’ to find a maximum

(a) (b)

v4

v6v3

v1

v5v2

1

2

1

1

v4

v6 v3

v1

v5 v2s t

V1 V2

A Novel Algorithm for Broadcasting in Multiple Channel Mobile Environment 37

flow. We can find a maximum bipartite

matching of the graph. As shown in Figure

9, the corresponding flow network G’ with

a maximum flow is shown. Shaded edges

have a flow of 1 unit capacity, and all other

edges carry no flow. The shaded edges

from V1 to V2 correspond to those in a

maximum matching of the data items. The

vertices v1 and v4 are matched together and

they will be scheduled in the same time

slot of different channels. Similarly,

vertices v2 and v6 are scheduled in the same

time slot. The other vertices v3 and v5 are

unmatched. Let α denote the set of all

matched vertex pairs. In this case, α = {(v1,

v4), (v2, v6)}.

For unmatched vertices, like v3 and v5,

we propose a greedy scheme to minimize

the number of DCs in the following. If

there are two unmatched vertices vi∈V1 and

vj ∈V2, that is, there doesn’t exist an edge

connected vi and vj in the flow network G’.

In other words, there exists an edge

connected vi and vj in the graph G. If they

are matched together, it will induce wi,j

DCs. Let 1V ′′ (2V ′′) denote the unmatched

vertices in V1 (V2), and E ′′ denote the

edges in the query graph G which are

between 1V ′′ and 2V ′′ . In our method,

first, we sort the edges in E ′′ by their

weights. Next, we select an edge by the

ordering recursively. We select the first

edge ei,j with the smallest weight, and

match vertices vi, and vj together, and add

(vi, vj) into α. Then, we remove all edges

connected with vi or vj from E ′′ . The

scheme is done to the set E ′′ emptied.

The matching algorithm is summarized in

figure 10.

Figure 9: The corresponding flow network G’ with a maximum flow. v4 will be matched to v1, and v2 will

be matched to v6.

v4

v6v3

v1

v5v2s t

38 資訊管理研究

Algorithm Matching (G)
Input: G(V,E), |V|=2n, V was partitioned

into two sets V1 and V2 such that

|V1|=| V2|, V1∩ V2=∅, and V1∪
V2=V

Output: Bipartite matching α of V1 and V2
with less number of DCs

1 Using rules R1, R2, and R3 to construct
the flow network G’ by graph G

2 Run the Ford-Fulkerson algorithm on
G’ to find maximum bipartite matching
α

3 For i = 1 to |E|

4 if (ei,j∈E, vi∈V1, vj ∈V2, and (vi,
vj)∉ α) then

5 Add ei,j into E ′′ ;
6 Sorting the edges of E ′′ by their

weights;

7 While (E ′′ ≠∅)
8 Select the first edge ei,j of E ′′ ;
9 α = α ∪ {(vi, vj)};
10 Remove the edges connected with

vi,or vj from E ′′ ;
11 Return α
Figure 10: The matching algorithm for DBCP.

4. Experimental Results

Our algorithms have been implemented in
the JAVA language on a PC with a Pentium
IV 3.2 G microprocessor and 512 MB RAM.
We generate query sets to evaluate the

performance of the approach over a range of
data characteristics. The parameters used in
the generation of query sets include N, M, S,
and F. Parameter N is defined as the number
of data items that are delivered on
broadcasting channel. Every data item on the
broadcast channels is accessed by one or
more queries. Parameter M is defined as the
total number of query patterns that access
parts of the broadcast data set. Selectivity S is
the maximum degree of a query’s QDS size
over the size of broadcast data set in terms of
percentage. For example 3% selectivity
means a query accesses at most 3% of the N
data items. We consider three different kinds
of distribution of query’s occurrence
frequency: uniform distribution, normal
distribution, and exponential distribution. We
assume the size of each data item to be equal
and set all data items’ size as one unit length.
The number of broadcast channels set to 2.

In the first experiment, we change the
number of data items N with 200 queries
and 5% selectivity. The three kinds of
distribution of query’s occurrence
frequency (uniform distribution, normal
distribution, and exponential distribution)
are considered. The results are shown in
Figure 11. We measure the performance
improvement i.e., DC (Data Collision)
reduction of the proposed method against

A Novel Algorithm for Broadcasting in Multiple Channel Mobile Environment 39

sequential (with respect to data ID)
schedules on which no effort of data
placement is put. Figure 11 shows the
percentages of improvement s of ours over
sequential. The improvement for the
sequential is calculated by

%100×
−

sequential
Ourssequential

.

As show in this result, the performance of
the proposed approach has little
dependency on the number of data items.
The performance improvement increases to
more than 30%--40%. The results show the
effectiveness of our approach.

0

5

10

15

20

25

30

35

40

45

50

100 150 200 250 300

of Data Items (N)

#

o
f

D
a
t
a

C
o
l
l
i
s
i
o
n
s

I
m
p
r
o
v
e
m
e
n
t

(
%
)

Uniform Distribution

Normal Distribution

Exponential Distribution

Figure 11: The improvement with change in the number of data items N. Three kind of distribution of

query’s occurrence frequency, uniform distribution, normal distribution, and exponential
distribution, are considered.

In the second experiment, we change the

number of query patterns M with 300 data
items and 5% selectivity. The results are

shown in the figure 12. As shown in this
result, the performance improvement
decreases with large number of queries.

40 資訊管理研究

20

25

30

35

40

45

50

100 150 200 250 300

of Data Items (M)

#

o
f

D
a
t
a

C
o
l
l
i
s
i
o
n
s

I
m
p
r
o
v
e
m
e
n
t

(
%

)

Uniform Distribution

Normal Distribution

Exponential Distribution

Figure 12: The improvement ratio with various numbers of query patterns M. Three kind of distribution

of query’s occurrence frequency, uniform distribution, normal distribution, and exponential

distribution, are considered.

In the third experiment, we change

selectivity values S with 100 query patterns
and 300 data items. The results are shown
in the figure 13. As shown in these results,
our proposed method on the average

reduces the number of DCs occurred by
40.74%, 44.88%, and 46.00%) regarding
the uniform distribution, normal
distribution, and exponential distribution,
respectively.

A Novel Algorithm for Broadcasting in Multiple Channel Mobile Environment 41

30

35

40

45

50

55

2 3 4 5 6

Selectivity (S)

#

o
f

D
a
t
a

C
o
l
l
i
s
i
o
n
s

I
m
p
r
o
v
e
m
e
n
t

(
%

)

Uniform Distribution

Normal Distribution

Exponential Distribution

Figure 13: The improvement ratio with various selectivity S. Three kind of distribution of query’s

occurrence frequency, uniform distribution, normal distribution, and exponential distribution,
are considered.

In above experiments we can observe

that the cases of exponential distribution of
freq(qi) provide better performance than
the others. The results show that more
highly skewed query distributions achieve
better performance with our method.

5. Conclusions

In this paper, we have formulated a new
data broadcast collision problem in
multi-channel mobile environment, and we
have presented a two-stage algorithm for the

problem. The partitioning algorithm decides
which data items can be scheduled into the
same channel and reduces the data collision
probability. Following the partition method,
we proposed a flow based matching method
to decide which two data items in different
channels will be broadcasted in the same time
slot. The matching algorithm can minimize
the number of data collisions. From our
simulation results, we have shown that our
approach is efficiently.

42 資訊管理研究

Reference

[1] S. Acharya, R. Alonso, M. Franklin, and
S. Zdonik, ``Broadcast Disk: Data
Management for Asymmetric
Communication Environments,'' ACM
SIGMOD Conference, pp. 199--210,
1995.

[2] S. Acharya, M. Franklin, and S. Zdonik,
``Disseminating Updates on Broadcast
Disks,'' Very Large Data Bases
Conference, pp. 354--365, 1996.

[3] Y.I. Chang and W.H. Hsieh, ``An
Efficient Scheduling Method for
Query-Set-based Broadcasting in Mobile
Environment,'' IEEE International
Conference on Distributed Computing
Systems Workshops, pp. 478--483, 2004.

[4] Y.I. Chang and C.N. Yang, ``A
Complementary Approach to Data
Broadcasting in Mobile Information
Systems,'' Data and Knowledge
Engineering, Vol. 40, pp. 181--194, 2002.

[5] Ming-Syan Chen, Kun-Lung Wu, and
Philip S. Yu,” Optimizing Index
Allocation for Sequential Data
Broadcasting in Wireless Mobile
Computing”, IEEE Transactions on
Knowledge and Data Engineering, vol.
15, no. 1, 2003.

[6] T. H. Cormen, C. E. Leiserson, and R. L.

Rivest, Introduction to Algorithms,
Second Edition, the MIT Press, 2001, pp.
651--669.

[7] Yon Dohn Chung and Myoung Ho Kim,
“An Index Replication Scheme for
Wireless Data Broadcasting,” Journal of
Systems and Software, vol. 51, no. 3,
2000.

[8] Y.D. Chung and M.H. Kim, ``Effective
Data Placement for Wireless Broadcast,''
Distributed and Parallel Databases, no. 9,
pp. 133--150, 2001.

[9] S. Hameed and N. Vaidya, ”Efficient
Algorithm for Scheduling Data
Broadcast,” Wireless Networks, Vol. 5,
No. 3, pp. 183--193, 1999.

[10] T. Imielinski, S. Viswanathan and B. R,
Badrinath, “Energy Efficient Indexing
on Air,” SiGMOD ACM, 1994.

[11] T. Imielinski, S. Viswanathan, and B.R.
Badrinath, ``Data on air: Organization
and access,'' IEEE Transactions on
Knowledge and Data Engineering, vol.
9, no. 3, pp. 353--372, 1997.

[12] W. Kernighan, and S. Lin, ``An Efficient
Heuristic Procedure for Partitioning
Graph,'' Bell System Technical Journal,
vol. 49, pp. 291--307, 1970.

[13] Kam-Yiu Lam, Edward Chan, and Joe
Chun-Hung Yuen, “Approaches for
Broadcasting Temporal Data in Mobile

A Novel Algorithm for Broadcasting in Multiple Channel Mobile Environment 43

Computing Systems,” The Journal of
Systems and Software 51, 2000.

[14] V.C.S. Lee, K. W. Lam, S. Wu and E.
Chan, ``Broadcasting Consistent Data in
Mobile Computing Environments,'' Proc.
Of the 7th IEEE Symp. On Real-Time
Technology and Application, pp.
123--124, 2001.

[15] G. Lee and S.C. Lo, ``Broadcast Data
Allocation for Efficient Access of
Multiple Data Items in Mobile
Environments,'' ACM/Baltzer Mobile
Networks and Applications, vol. 8, pp.
365--375, 2003.

[16] Guanling Lee, Shou-Chih Lo, and Arbee
L.P. Chen, “Data Allocation on
Wireless Broadcast Channels for
Efficient Query Processing,” IEEE
Transactions on Computers, vol. 51, no.
10, 2002.

[17] Shou-Chih Lo and Arbee L.P. Chen,
“Optimal Index and Data Allocation in
Multiple Broadcast Channels,” Data
Engineering, 2000.

[18] W. C. Peng and M. S. Chen, ``Dynamic
Generation of data Broadcasting
Programs for a Broadcast Disk Array in
a Mobile Computing Environment,''
Proc. of the 9th International Conference
on Information Knowledge Management,
pp. 38--45, 2000.

[19] K. Prabhakara, K.A. Hua, and J.H. Oh,
``Multi-Level Multi-Channel Air Cache
Designs for Broadcasting in a Mobile
Environment,'' Proc. of the 16th
International Conference Data
Engineering, pp. 167--186, Feb.-Mar.,
2000.

[20] C. Su, L. Tassiulas, and V.J. Tsotras,
``Broadcast Scheduling for Information
Distribution,'' Wireless Networks, vol. 5,
no. 2, pp. 137--147, 1998.

[21] Kian-Lee Tan and Jeffrey Xu Yu,
“Generating Broadcast Programs That
Support Range Queries,” IEEE
Transactions on Knowledge and Data
Engineering, 1998.

[22] D.A. Tran, K.A. Hua, and K.
Prabhakaran, “On the Efficient Use of
Multiple Physical Channel Air Cache,”
Proc. IEEE Wireless Communication
and Network Conference, pp 17--21,
2002.

[23] Guang-Ming Wu, “An Efficient Data
Placement for Query-Set-Based
Broadcasting in Mobile Environment,”
Computer Communications, 2007.

[24] Nitin H. Vaidya and Sohail Hameed,
“Scheduling Data Broadcasting in
Asymmetric Communication
Environments,” Kluwer Academic
Publishers, vol. 5, 1999.

44 資訊管理研究

[25] Wai Gen Yee, Student Member, IEEE,
Shamkant B. Navathe, Edward
Omiecinski, and Christopher Jermaine,
“Efficient Data Allocation over Multiple
Channels at Broadcast Servers,” IEEE
Transactions on Computers, vol. 51,
2002.

