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ABSTRACT 

Broadcast is an efficient and scalable method for resolving the bandwidth limitation in a wireless 
environment. In many applications, mobile clients might need more than one data item. However, most 
previous researches on query-set-based broadcasting are restricted to a single broadcast channel 
environment. The results are limited applicability to the upcoming mobile environments. In this paper, 
we relax this restriction and explore the problem of query-set-based broadcasting in multiple broadcast 
channels. In multi-channel query-set-based broadcasting, we discover data collision (two data items in 
the same query set are arranged on two channels at the same time slot) is an important factor to affect 
users’ access time. In this paper, we introduce the new data collision problem motivated by 
multi-channel query-set-based broadcasting environment. We then present a two-stage scheme of data 
partitioning and data matching to solve the new data collision problem. Experiments are performed to 
justify the benefit of our approach. 
Index Terms—Access time, data broadcast, mobile environment, multi-channel, query-set-based 

broadcasting. 
 

1. Introduction 

Recent advances in computer hardware 
technology have made possible the 
production of small computers, like PDAs 
and notebooks, which can be carried around 
by users. These small computers can be 
equipped with wireless communication 
devices that enable users to access global 
data services from any location. In a wireless 

environment, there are two kinds of 
communications between a server and the 
mobile clients. One is broadcasting and the 
other is request-and-reply. Due to restrictions 
on bandwidth and energy, in wireless 
environment the broadcasting method is 
preferred [11]. 

Two important factors must be considered 
in a broadcast-based information system, 
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access time [1, 3, 13, 16, 21, 24, 25] and 
tuning time [5, 7, 10, 17]. The access time is 
the time elapsed from the moment a client 
device submits a query into the broadcast 
channel to the moment the desired data are 
acquired. This is the total time a client device 
must spend and is often used to evaluate the 
performance of the broadcast system. The 
tuning time is the time spent by the client 
listening to the broadcast channel. When the 
clients are listening to the data in the 
broadcast channel, the clients are in the 
active mode. Therefore, the tuning time is 
often used to evaluate the power 
consumption of the clients. The aim of our 
paper is to reduce the access time through 
intelligent organization of the broadcast data. 

Many approaches have been proposed to 
reduce the access time [1, 2, 4, 8, 9, 14, 18, 
20]. In these papers, a single broadcast 
channel is used to broadcast data items in 
different frequencies according to their 
relative access rates. Note that, there exist 
situations where multiple low-bandwidth 
physical channels cannot be combined into a 
single high-bandwidth physical channel [19, 
22]. In the multi-channel environment, the 
system can schedule data items on multiple 
channels [19, 22]. In addition, several 
network standards, such as FDMA-based 
systems, divide the network bandwidth into 
several physical channels where individual 

mobile clients listen to one channel at a time. 
Furthermore, most of the previous 

approaches assume that each mobile client 
needs only one data item. They do not 
consider the relationship between data 
objects when a query contains more than one 
data item. However, in many situations, a 
mobile client might need more than one item 
of data. [3, 8, 15, 23] proposed scheduling 
methods for single channel query-set-based 
data broadcasting. These works studied on 
broadcasting dependent data are restricted to 
a single broadcast channel environment. The 
results are limited applicability to the 
upcoming mobile environment. To view of 
this, in this paper, we explore the 
query-set-based broadcast problem in 
multiple broadcast channels. In multi-channel 
mobile environment, the data items must be 
scheduled in the channels. Data collision 
occurred when two data items are transmitted 
to a mobile client on two different channels 
at the same time slot. Since the mobile client 
can only listen to a channel at the same time 
to access one of the data items, data collision 
forces the mobile client to wait for another 
until next broadcast cycle. This leads to an 
increase of the client’s access time and the 
length of the access time are certain to 
exceed one broadcast cycle length. To reduce 
the number of data collisions, an intelligent 
idea is partitioning the data items which are 
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in same query set into the same channel. 
Therefore, this is an important work to 
develop a good partition method to reduce 
the dependent data items (data items in the 
same query set) into different channels. 

In this article, we introduce a new data 
collision problem motivated by multi-channel 
mobile environment. For the data collision 
problem, we investigate an efficient 
partitioning method. Our partitioning 
algorithm can partition all data items into K 
channels and reduce the data collision 
probability. Following the partitioning, we 
propose a matching based method to decide 
which data items (partitioned in different 
channels) will be broadcasted in the same 
time slot and minimize the number of data 
collisions. In the matching algorithm, we first 
transfer the matching problem into a 
maximum flow problem. Next, we applied 
the maximum bipartite matching technique 
which derived from the Ford-Fulkerson 
method [6] to reduce the number of data 
collisions. Experimental results show that our 
algorithm can reduce the number of data 
collisions required for queries efficiently. 

The remainder of this paper is organized as 
follows. Section 2 formulates the data 
collision problem in broadcast environment. 
Section 3 proposes our two-stage algorithm. 
Section 4 reports the experimental results. 
Finally, conclusions are given in Section 5. 

2. Problem Formulation 

Figure 1 shows an example system 
architecture of a data broadcast system which 
broadcasts data items periodically according 
to a broadcast scheduling. We assume that 
there are K channels in a broadcast area, each 

denoted Ci, 1 ≤ i ≤ K. A database is made up 
of N unit-sized items, denoted dj, 1 ≤ j ≤ N. 
Each item is broadcasted on one of the 

channels, so Ci broadcasts Ni data items 1 ≤ i 

≤ K, ∑
=

=
K

i
i NN

1

. Let L be the length of the 

broadcast program. L is equal to 





K
N

. We 

assume that N = K×L without loss of 
generality. Each channel broadcasts its data 
items periodically according to a broadcast 
scheduling. Please see figure 1. A broadcast 
scheduling is an arrangement of all data items 
D on K broadcast channels and every data 
item appears in exactly one position on one 
of the channels. 

Let Q = {q1, q2, …, qM} be a set of M 
query patterns whose data set and frequency 
(or weight) are denoted by QDS(qi), and freq 

(qi), 1 ≤ i ≤ M. Let D = {d1, d2, …, dN}, 
denote the union of the data items of Q, that 

is, D = U
Mi

iqQDS
≤≤1

)( . 
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Figure 1: An architecture of a multi-channel wireless broadcasting system. 

 

Example 1: As shown in figure 2, consider 
a database D containing eight data items, D = 
{d1, d2, …, d8}. Assume that there are two 
channels on server. Data items d1, d2, d5, and 
d8 are partitioned into channel 1 and d3, d4, d6, 
and d7 are partitioned into channel 2. The 
broadcast ordering of channel 1 is <d1, d5, d8, 

d2> and channel 2 is <d4, d7, d6, d3>.  There 
are four queries in Q, Q = {q1, q2, q3, q4}. 
Suppose QDS(q1)={d1, d4}, QDS(q2)={d2, d6}, 
QDS(q3)={d5, d8}, and QDS(q4)={d3, d7}. D 

= U
41

)(
≤≤i

iqQDS .  

 

 
Figure 2: An example of a broadcast program. There are two channels and eight data items. 
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Given two data items di and dj, if {di, dj} ⊂ 
QDS(qk) and di and dj are scheduled in the 
same time slot of two different channels. We 
call that a data collision (DC) occurred in 
QDS(qk), denoted by di ≅ dj. As shown in 
example 1, {d1, d4}⊂ QDS(q1), and d1 and d4 
are scheduled in the same time slot of 
channel 1 and channel 2, respectively. 
Therefore, d1 ≅ d4, and there is a DC in 
QDS(q1). Since a mobile client can only 
listen to one channel at the same time, one of 
the data items, d1 or d4, can be accessed in 
current broadcast cycle and the other one 
must be waited until next broadcast cycle. It 
is thus evident that a DC will lead to an 
increase of a client’s access time. 

Theorem 1: Given a broadcast scheduling 
and two queries qi and qj, if query qi has a DS 
in its QDS and query qj’s QDS is not 
occurred any DS, then the qi’s access time is 
longer than the qj’s access time. 

Proof: Figure 3 shows a broadcast 
scheduling. If QDS(qi)={di1, di2, di3, di4, di5}, 

and di2 ≅ di5. The shaded box represents a 
complete cycle time. (The length of the 
shaded box is equal to L.) The left border of 
the box represents the start time of a client 
that submits the query qi to access data items. 
However we slide the box to anywhere (a 
client start turning on a channel anywhere), 
the box will cover all data items one time 
exactly. The data items which do not induce a 
DC can be accessed during the box (time=L), 
i.e. di1, di3, and di4 can be accessed. But di2 ≅ 
di5, therefore, the client will select one of 
channels to receipt di2 or di5 at the time. The 
other data item will receipt until next 
broadcast cycle. Therefore, the qi’s access 
time is longer than L. Oppositely, given a 
query qj, if all data items in qj are not 
inducing any a DS. The box will cover all qj’s 
data items during one length of a cycle time 
and receipts them. Therefore, the access time 
of qj is less than L. So the qi’s access time is 
longer than the qj’s access time. 

 

 
Figure 3: An example of data broadcast scheduling. It shows the negative influence on access time of a 

query by a DC. 
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By the theorem 1, hence, this is an 
important issue to reduce the number of DCs 
in a multi-channel data broadcast program. 

Data Broadcast Collision Problem 
(DBCP): Given a set of query patterns Q = 
{q1, q2, …, qM} with their frequencies 
(weights), the data broadcast collision 
problem is to find an optimal broadcast 
schedule which minimizes total data 
collisions of the query patterns. 

3. Our Approach 

In this section, we present an algorithm for 
DBCP. Our scheduling algorithm consists of 
two stages: the partitioning followed by the 
matching. 

3.1 Partitioning Algorithm for the DBCP 

To obtain an efficient initiation, we use a 
partition algorithm that partitions all data 
items into K channels. The objective is to 
reduce the data collision probability. The 
main idea is described as follows: if two data 
items di and dj belong to the same QDS, we 
will partition di and dj into the same 
broadcast channel as far as possible. Then the 
two data items will not induce a DC. 
Otherwise, if di and dj are partitioned into 
different channels, maybe di and dj will be 
scheduled in the same time slot and inducing 
a DC. We called this is a tended data 

collision (TDC). When two data items occur 
to a TDC, they will possible be a DC in a 
data broadcast scheduling. In other words, if 
two data items belong to the same QDS and 
they are not a TDC, then they do not lend to a 
DC. 

Given a set of weighted queries Q = {q1, 
q2, …, qM} whose union of QDSs is D = {d1, 
d2, …, dN}, it can be modeled by a graph G = 
(V, E), called query graph, where V 
represents the data items and the edge set E 
represents which two data items belong to the 

same query. E = {ei,j | di ∈ QDS(qk) and dj ∈ 
QDS(qk), where qk ∈ Q }. Let wi,j denote the 

weight of edge ei,j. wi,j = ∑ )( kqfreq , if {di, 

dj}⊂QDS(qk). For example, given a database 
D containing six data items d1, d2, …, d6, if 
there are three queries q1, q2, and q3. Assume 
that QDS(q1) = {d1, d2, d5}, QDS(q2) = {d1, d5, 
d6}, QDS(q3) = {d2, d3, d4, d5}, and ferq(q1) = 
ferq(q2) = ferq(q3) = 1. We can represent it by 
the graph G = (V, E) as shown in the figure 4. 
V = {v1, v2, …,v6} and E = {e1,2, e1,5, e1,6, e2,3, 
e2,4, e2,5, e3,4, e3,5, e4,5, e5,6}. Because of {d1, d5} 

⊂ QDS(q1) and {d1, d5} ⊂ QDS(q2), w1,5 = 
ferq(q1) + ferq(q2) = 2. Similarly, w2,5 = 

ferq(q2) + ferq(q3) = 2 because of {d1, d5} ⊂  
QDS(q2) and {d1, d5} ⊂ QDS(q3). The 
weights of the other edges are equal to 1. 
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Figure 4: Graph modeling for weighted query set. 

 

Let |V| denote the number of vertices in V. 
The partitioning problem is dividing V into K 
sets (K channels) V1, V2, …, VK, where  

Vi ∩ Vj = ∅, i ≠ j 
| Vi | = | Vj |, 1≤i, j≤K 

U
K

i i VV
1=

=  

Partition is also referred to as a cut. The 
cost of partition is called the cut-size, which 
is the total weight of edges crossing the cut. 
A cut-size represents the number of TDCs 
among queries. Let Ci,j be the cut-size 
between partitions Vi and Vj. The objective of 
the partitioning problem minimizes 

∑∑
= =

K

i

K

j
jiC

1 1
, , where i≠j.  

Multiway partitioning can be normally 
reduced to a series of two-way or 

bipartitioning problem. Each component is 
hierarchically bipartitioned until the desired 
number of components is achieved. In this 
paper, we will restrict ourselves to 
bipartitioning. We call the partitioning 
process is bisectioning and the partitions are 
bisections. 

Based on KL algorithm [12], we propose a 
bipartition algorithm in the following. In this 
bipartitioning algorithm, we start by initially 
partitioning the graph G = (V, E) into two 
subsets of equal sizes. Vertex pairs are 
exchanged across the bisection if exchange 
improves the cutsize. The above procedure is 
carried out iteratively until no further 
improvement can be achieved. 

Consider the query graph given in figure 4. 
The initial partitions are V1 = {v1, v2, v3} and 

v1 

v6

v3

v4

v5

v2
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1

1
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V2 = {v4, v5, v6}. (It is shown in figure 5(a).) 
Notice that the initial cutsize is 8. The next 
step of the algorithm is to choose a pair of 
vertices whose exchange results in the largest 
decrease of the cutsize or results in the 
smallest increase, if no decrease is possible. 
The cost reduction for moving vertex vi, 
denoted by Di. Di is defined as 

Di = Ei - Ii, 
where Ei is the total cost of edges of vertex vi 

that cross the bisection boundary (if vi ∈ V1, 

Ei = ∑
∈ 2

,
Vv

ix
x

w ) and Ii is the total cost of edges 

of vertex vi that do not cross the boundary (if 

vi ∈ V1, Ii = ∑
∈ 1

,
Vv

ix
x

w ). If vi and vj are 

exchanged, the decrease of cost is 
Gvi,vj=Di+Dj-2wi,j. In the example given in 

figure 5(a), for vertex v1, E1 = w1,5 + w1,6 = 
2+1 = 3, I1= w1,2=1, D1=3-1=2. Similarly, for 
vertex v4, E4=1+1=2, I4=1, D4=2-1=1. In this 
example, this is a suitable vertex pair, (v1, v4), 
which decreases the cutsize by 3 (Gv1,v4 = 

D1+D4-2w1,4 =2+1-0=3). A tentative 
exchange of this pair made. Figure 5(b) 
shows the result of the tentative exchange. 
Let gi denote the decrease of ith tentative 
exchange. Therefore, g1 is equal to 3. These 
two vertices are then locked. (The locked 
vertices represented by shaded nodes.) This 
lock on the vertices prohibits them from 

taking part in any further tentative exchanges. 

If vi∈V1 and vj∈V2 are interchanged, then the 
new D-values, D’, are given by 

Dx’ = Dx +2wx,i – 2wx,j, ∀vx∈V1-{vi} 
Dy’ = Dy +2wy,j – 2wx,i, ∀vy∈V2-{vj} 
The above procedure is applied to the new 

partitions, which gives a second vertex pair 
of (v2, v6). This procedure is continued until 
all vertices are then locked. Figure 5(c) and 
5(d) shows the results of the second and third 
tentative exchanges, respectively. During this 
process, a log of all tentative exchanges and 
the resulting cutsizes is stored. Table 1 shows 
the log of vertex exchanges for the given 
example. Let psk denote the partial sum of 
cutsize decrease over the exchanges of first k 

vertex pairs, psk =∑=

k

i ig
1

. Note that the 

ps-values are given in the column 4 of the 
table, e.g., ps1 =3, ps2 =2 and ps3 =0. The 
value of k for which psk gives the maximum 
value of all partial sum is determined from 
the table. In this example, k=1 and ps1 =3 is 
the maximum partial sum. The first k pairs of 
vertices are actually exchanged. In this 
example, the first vertex pair (v1, v4) is 
actually exchanged, resulting in the bisection 
shown in figure 6. This completes an 
iteration and a new iteration starts. However, 
if no decrease of cutsize is possible during an 
iteration, the algorithm stops. Table 2 shows 
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the log of the second iteration. The maximum 
partial sum is equal to 0. Therefore, no vertex 
is exchanged and the bisection in figure 6 is 

the final bisection. The algorithm is 
summarized in figure 7. 

 
Figure 5: (a) The initial bisection. (b) The result of the first tentative exchange which exchange vertices v1 

and v4. (c) The result of the second tentative exchange. (d) The result of the third tentative 
exchange. 
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Figure 6: The final partitions of figure 5. 

 

 
i Vertex Pair gi psi Cutsize
0 - - - 8 
1 (v1, v4) 3 3 5 
2 (v2, v6) -1 2 6 
3 (v3, v5) -2 0 8 

Table 1: The log of the vertex exchanges. (Iteration 1.) 

 
 i Vertex Pair gi psi Cutsize
0 - - - 5 
1 (v2, v6) -1 -1 6 
2 (v1, v4) -1 -2 7 
3 (v3, v5) 2 0 5 

Table 2: The log of the vertex exchanges. (Iteration 2.) 
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Algorithm Partitioning (G) 
Input: G(V,E), |V|=2n 
Output:  Balanced bi-partition V1 and V2 

with small number of TDCs 

1 Random bipartition V into V1 and V2 

such that |V1|=|V2|, V1∩ V2=∅,and V1∪ 
V2=V; 

2 repeat 

3  Compute Dj, ∀vj∈V; 
4  For i = 1 to n 
5 Find a pair of unlocked 

vertices vxi∈V1 and vyi ∈V2  

whose exchange with largest 
Gxi, yi; 

6 Exchange and mark vxi and 
vyi as locked, store the gain 

gi; 

7 Compute the new Dj, for all 

unlock vj∈V; 

8 Find k, such that psk =∑
=

k

i
ig

1

is 

maximized; 

9  if psk > 0 then 
10 Move vx1, vx2, …, vxk, from 

V1 to V2, and vy1, vy2, …, vyk, 

from V2 to V1; 

11  Unlock v, ∀v∈V; 
12 Until psk ≤ 0. 
Figure 7: The partition algorithm for DBCP. 
 
 

3.2 Matching Algorithm for the DBCP 

Following the partitioning, a matching 
based method is applied to decide which 
two data items (partitioned in different 
channels) will be broadcasted in the same 
time slot. The matching algorithm has to 
minimize the number of data collisions. As 
the example shown in figure 2, it has given 
us a picture of how the mismatching of 
data items d1 and d4 on the broadcast 
sequences could increase the access time of 
the client. In this subsection, we applied 
the maximum bipartite matching technique 
to reduce the number of DCs. 

The maximum bipartite matching 
technique [6] is a well known method that 
derived from the Ford-Fulkerson method to 
find the maximum flow in a flow network. 
In order to transform the DBCP to the 
maximum bipartite matching problem, we 
consider the output of the partition 
algorithm as a bipartite network. Given a 
graph G = (V, E) that is output from the 

partition algorithm, where V= V1∪ V2 and 
V1∩ V2=∅. We construct the corresponding 
flow network G’ = (V’, E’) for the bipartite 
graph G as follows. We let the source s and 
sink t be new vertices not in V, and we let 

V’= V∪{s, t}. The directed edges of G’ are 
generated by the following rules: 
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R1: If there are two vertices vi∈V1, 
vj ∈V2 and ei,j ∉ E, then we 
add an edge ei,j into E’ with 
unit capacity. 

R2: ∀ vi∈V1, we add an edge es,i 
into E’ with unit capacity. 

R3: ∀ vj∈V2, we add an edge ej,t 
into E’ with unit capacity. 

All edges have only one capacity. This 
made sure that one unit capacity were 

shipped from a vertex vi∈V1 to a vertex 
vj∈V2 at most. In other words, a vertex 
vi∈V1 is matched to a vertex vj∈V2 at most. 
Similarly, a vertex vj∈V2 is matched to a 
vertex vi∈V1 at most. Rule R1 creates en 

edge between two vertices vi and vj if they 
do not induce a TDC, and gives unit 
capacity to the edge. Therefore, in the 
flow-based algorithm, vi and vj can be 
matched together and have no DC 
occurring. That is to say, if vi and vj 
inducing to a TDC, rule R1 avoids the two 
vertices matching together and inducing a 
DC. As shown in figure 8(a), this is the 
output of figure 5, vertices are partitioned 
into two sets V1 = {v2, v3, v4} and V2 = {v1, 
v5, v6}. There are five TDCs between V1 
and V2. Figure 8(b) shows the flow 
network which is corresponding to the 
bipartite graph of figure 8(a). 

 

 
Figure 8 (a) Bipartite graph G = (V, E), where V is partitioned into two sets V1 and V2. (b) The 
corresponding flow network G’ = (V’, E’). 
 

Apply the Ford-Fulkerson method [6] on the flow network G’ to find a maximum 
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flow. We can find a maximum bipartite 

matching of the graph. As shown in Figure 

9, the corresponding flow network G’ with 

a maximum flow is shown. Shaded edges 

have a flow of 1 unit capacity, and all other 

edges carry no flow. The shaded edges 

from V1 to V2 correspond to those in a 

maximum matching of the data items. The 

vertices v1 and v4 are matched together and 

they will be scheduled in the same time 

slot of different channels. Similarly, 

vertices v2 and v6 are scheduled in the same 

time slot. The other vertices v3 and v5 are 

unmatched. Let α denote the set of all 

matched vertex pairs. In this case, α = {(v1, 

v4), (v2, v6)}. 

For unmatched vertices, like v3 and v5, 

we propose a greedy scheme to minimize 

the number of DCs in the following. If 

there are two unmatched vertices vi∈V1 and 

vj ∈V2, that is, there doesn’t exist an edge 

connected vi and vj in the flow network G’. 

In other words, there exists an edge 

connected vi and vj in the graph G. If they 

are matched together, it will induce wi,j 

DCs. Let 1V ′′  ( 2V ′′ ) denote the unmatched 

vertices in V1 (V2), and E ′′  denote the 

edges in the query graph G which are 

between 1V ′′  and 2V ′′ . In our method, 

first, we sort the edges in E ′′  by their 

weights. Next, we select an edge by the 

ordering recursively. We select the first 

edge ei,j with the smallest weight, and 

match vertices vi, and vj together, and add 

(vi, vj) into α. Then, we remove all edges 

connected with vi or vj from E ′′ . The 

scheme is done to the set E ′′  emptied. 

The matching algorithm is summarized in 

figure 10. 

 
Figure 9: The corresponding flow network G’ with a maximum flow. v4 will be matched to v1, and v2 will 

be matched to v6. 
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Algorithm Matching (G) 
Input: G(V,E), |V|=2n, V was partitioned 

into two sets V1 and V2 such that 

|V1|=| V2|, V1∩ V2=∅, and V1∪ 
V2=V 

Output:  Bipartite matching α of V1 and V2 
with less number of DCs 

1 Using rules R1, R2, and R3 to construct 
the flow network G’ by graph G 

2 Run the Ford-Fulkerson algorithm on 
G’ to find maximum bipartite matching 
α 

3 For i = 1 to |E| 

4 if (ei,j∈E, vi∈V1, vj ∈V2, and (vi, 
vj)∉ α) then 

5   Add ei,j into E ′′ ; 
6 Sorting the edges of E ′′  by their 

weights; 

7 While ( E ′′ ≠∅) 
8  Select the first edge ei,j of E ′′ ; 
9   α = α ∪ {(vi, vj)}; 
10 Remove the edges connected with 

vi,or vj from E ′′ ; 
11 Return α 
Figure 10: The matching algorithm for DBCP. 

4. Experimental Results 

Our algorithms have been implemented in 
the JAVA language on a PC with a Pentium 
IV 3.2 G microprocessor and 512 MB RAM. 
We generate query sets to evaluate the 

performance of the approach over a range of 
data characteristics. The parameters used in 
the generation of query sets include N, M, S, 
and F. Parameter N is defined as the number 
of data items that are delivered on 
broadcasting channel. Every data item on the 
broadcast channels is accessed by one or 
more queries. Parameter M is defined as the 
total number of query patterns that access 
parts of the broadcast data set. Selectivity S is 
the maximum degree of a query’s QDS size 
over the size of broadcast data set in terms of 
percentage. For example 3% selectivity 
means a query accesses at most 3% of the N 
data items. We consider three different kinds 
of distribution of query’s occurrence 
frequency: uniform distribution, normal 
distribution, and exponential distribution. We 
assume the size of each data item to be equal 
and set all data items’ size as one unit length. 
The number of broadcast channels set to 2. 

In the first experiment, we change the 
number of data items N with 200 queries 
and 5% selectivity. The three kinds of 
distribution of query’s occurrence 
frequency (uniform distribution, normal 
distribution, and exponential distribution) 
are considered. The results are shown in 
Figure 11. We measure the performance 
improvement i.e., DC (Data Collision) 
reduction of the proposed method against 
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sequential (with respect to data ID) 
schedules on which no effort of data 
placement is put. Figure 11 shows the 
percentages of improvement s of ours over 
sequential. The improvement for the 
sequential is calculated by 

%100×
−

sequential
Ourssequential

. 

As show in this result, the performance of 
the proposed approach has little 
dependency on the number of data items. 
The performance improvement increases to 
more than 30%--40%. The results show the 
effectiveness of our approach.  
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Figure 11: The improvement with change in the number of data items N. Three kind of distribution of 

query’s occurrence frequency, uniform distribution, normal distribution, and exponential 
distribution, are considered. 

 
In the second experiment, we change the 

number of query patterns M with 300 data 
items and 5% selectivity. The results are 

shown in the figure 12. As shown in this 
result, the performance improvement 
decreases with large number of queries. 
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Figure 12: The improvement ratio with various numbers of query patterns M. Three kind of distribution 

of query’s occurrence frequency, uniform distribution, normal distribution, and exponential 

distribution, are considered. 

 
In the third experiment, we change 

selectivity values S with 100 query patterns 
and 300 data items. The results are shown 
in the figure 13. As shown in these results, 
our proposed method on the average 

reduces the number of DCs occurred by 
40.74%, 44.88%, and 46.00%) regarding 
the uniform distribution, normal 
distribution, and exponential distribution, 
respectively. 
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Figure 13: The improvement ratio with various selectivity S. Three kind of distribution of query’s 

occurrence frequency, uniform distribution, normal distribution, and exponential distribution, 
are considered.  

 
In above experiments we can observe 

that the cases of exponential distribution of 
freq(qi) provide better performance than 
the others. The results show that more 
highly skewed query distributions achieve 
better performance with our method.  

5. Conclusions 

In this paper, we have formulated a new 
data broadcast collision problem in 
multi-channel mobile environment, and we 
have presented a two-stage algorithm for the 

problem. The partitioning algorithm decides 
which data items can be scheduled into the 
same channel and reduces the data collision 
probability. Following the partition method, 
we proposed a flow based matching method 
to decide which two data items in different 
channels will be broadcasted in the same time 
slot. The matching algorithm can minimize 
the number of data collisions. From our 
simulation results, we have shown that our 
approach is efficiently. 
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