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An Application of Binary Formulation Framework for Comparing the Heuristics in
Dynamic Lot-sizing Model
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Abstract

This study visualizes the complicated dynamic lot-sizing (DLS) model to present the
scattered trend of feasible production policies through the binary formulation framework. The
minimum total costs curve and maximum total costs curve are plotted visibly under the
demand patterns with well-defined termination point. Moreover, some of the significant
heuristics are used to reflect the sensitivity interval through all demand patterns and the
appropriate range of sensitivity interval could be recognized by means of several indices.
Managers could decide the appropriate range of sensitivity interval and select an appropriate
heuristics to simplify the processes of lot-sizing decisions.

Keywords : Lot Sizing, Dynamic Programming, Binary Formulation, Heuristics.

1. Introduction

The dynamic lot-sizing (DLS) models have been a significant procedure to determine the
optimal timing and amount for production policies in practice. Wagner and Whitin (1958)
planning and inventory control, but the disadvantage of Wagner-Whitin (W-W) algorithm
suffered from a computational complexity. Zangwill (1969) and Love (1972) developed
efficient dynamic programming based algorithms for incapacitated serial systems. Moreover,
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Fordyce and Webster (1984), Evans (1985), Chyr (1990, 1993), and Federgruen and Tzur
(1991) presented some efficient algorithms to improve the computational efficiency.
Meanwhile, due to the limitations of computational technology, several heuristic algorithms
were investigated and developed by Gorham (1968), DeMatteis (1968), Silver and Meal
(1973), and Groff (1979). Thus, most academic literatures emphasized to find the optimal
solution with efficient algorithms or to get approximated solutions by adopting heuristic
algorithms in requirements planning systems. However, there are few literatures to discuss
how the behavior of all the possible solutions with associated total costs in DLS model. This
study illustrates the characteristics of total costs for all the possible solutions in DLS model
through the binary formulation framework.

After providing the introduction of motivations, the remainder of this study is organized
as follows. Brief reviews of relevant literature about heuristics and excellent reviews are
presented in section 2. The binary formulation framework and the trend of the total cost curve
in DLS model is proposed in section 3. The sensitivity of the various algorithms are analyzed
and recognized in section 4 and section 5. Finally, section 6 summaries the significant results
of this study and some implications for future directions.

2. Literature Review

DLS model is subjected to vast interest due to the problem arises in many practical
situations. Kaimann (1969) made the initial investigation aimed at identifying when to switch
from the traditional EOQ model to the dynamic programming model. Some of the demand
patterns with a well-defined termination point were used to compare the EOQ with the W-W
algorithm. Kaimann (1969) also pointed out that the easy of use EOQ technique would
outweigh the saving generated by using the other dynamic programming model even if there
may be a small variation in total cost one way or other. Berry (1972) continued using the
demand patterns to present a framework and to guide the production manager in selecting a
procedure with respect to two criteria: inventory related costs, and computing time. Silver-
Meal (1973) developed a simple heuristic for coping with the problem of selecting
replenishment quantities under the time-varying demand patterns. Groff (1979) used the
demand patterns to evaluate a major strength of part-period balancing. This study uses the
demand patterns to recognize the sensitivity analysis and the variation of sensitivity interval
in the DLS model.

A number of studies have provided an excellent review and comparison of solution
approaches into lot sizing literature. Axsater (1985) derived the worst case performance
bounds for a class of lot sizing heuristics and dealt with classical DLS problems without
backlogging and capacity constraints. Zoller and Robrade (1988) explored numerous
heuristics and indicated users of pertinent standard software benefit substantially from an
incorporation of more recently proposed methods. Nydick and Weiss (1989) compared ten
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lot-sizing techniques using a set of widely varying parameters. Each technique can be
evaluated for a specific data set that most closely approximates reality.

Simpson (2001) demonstrated not only various published lot sizing rules vary in terms of
cost performance but also possess distinct strengths and weakness with respect to sparse
demand patterns, short versus longer planning horizons, and degree of nervousness. Jans and
Degraeve (2007) surveyed and compared the various meta-heuristics and distinctive solution
approaches. Their respective advantages and disadvantages gave insight into more powerful
hybrid algorithms, and provided the general guidelines for computational experiments by
several examples. The calculating results of all heuristic algorithms are approximate or equal
to the best solutions in the literature review.

Through the numerical examples of the demand patterns, this study locates the solutions
in DLS model by the following 3 algorithms, including Wagner-Whitin (W-W), Silver-Meal
(S-M), and Part Period Balancing (PPB). The locations of the solutions will indicate the
sensitivity of these algorithms in DLS problems.

3. Binary Formulation Framework for Dynamic Lot-Sizing Model

This study makes capital of the binary formulation framework to visualize the
complicated DLS model. The production policy of each period has two choices, “set-up
(Order)” or “no set-up (Null)”, in the calculating process. Table 1 shows the production
policies of the 4-period demand and it is composed of 16 kinds of the production policies.
Nonetheless, some significant development deserves to be mentioned, if the first period
demand isn’t empty, production policies can be reduced by 8 kinds of the production policies.
In order to make computer for “Order” or “Null” separately, the production policies can
translate into binary representation. The zero-one form for the 4-period production policies
are also shown in Table 1, each production policy consists of a set of {0, 1}, which 0
represents “Null” and 1 represents “Order”. The 4-period production policies are from 0000 to
1111; moreover, if the first period demand isn’t empty, the 4-period production policies are
from 1000 to 1111. Base on binary formulation framework, the demand of n-period has 2"
production policies, and it could be reduced by 2"* production policies when the first period
demand isn’t empty.

According to the binary formulation framework, the total costs of DLS model of any
production policies could be calculated effortlessly. Let D; denote the demand at period t, S;
denote the set-up cost at period t, P; denote the production policy {0, 1} at period t, H; denote
the unit holding cost for period t-1 through period t, and k denote the span from the anterior
production policy {1} to the current production policy {0}. The total costs Tc(T) of the
DLS model can then be written as:

T t+k

TC(T)= ngt+(1—Fg)qZHt} where P;=0or1,t=1,2,...T. (1)

t=1 t=t+1
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Table.1 The Zero-one Form of the 4-period Demand

production Binary production Binary
. Zeto-One ) Zero-One

policy Formmlation policy Formulation
(rder, Order, Order, Order 1111 bl Order, (rder, Order ot
Onder, Cirder, Oider, Hiull 1110 210 28] Hhall, Order, Crder, Hill 0110 -1~ 241
O, Cirder, Fhall, Cirder 1101 Fall, Cirder, Fiall, Crder 0101
order Order WLl ) 1100 ) 810~ 1510 Hall. ot Wl Ml ) 0100 2 D ~ 7w
(el Order, Cider 1011 Hl, Hell, Ooder, Crder 001l
Oider, Hiull, Crder, Fiall 1010 10005 ~ 11115 [ HhalL bhall, Order, Bl no1o 0o00g ~ 0111y
Order, Hull, Fll, Ordar 1001 Hiall, Fhall, Full, Order nom
Order, Hull 9l e 1000 Sl il . Ml 0000

4. Analysis of Dynamic Lot-Sizing Model

For base-case comparison, this study takes advantage of the example from Mekler (1993)
to describe all scattered solutions for complicated DLS model. The total demand is 1200 and
the schedule of 12-period demand is {10, 62, 12, 130, 154, 129, 88, 52, 124, 160, 238, 41}.
This study follows four assumptions to make DLS model plainly. First, all of demands for
each period must be available at the beginning of the period. Second, all of demands for a
given period must be met and cannot be backordered. Third, the production set-up decisions
are assumed to occur at the beginning of time intervals with zero lead time. Finally, the all
demands are satisfied from inventory at the beginning of each period.
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Fig. 1 Solutions Scatteration of All Production Policies with S; = 300
From the binary formulation framework, the first period demand of the schedule isn’t
empty; hence the calculating results can be extended 2048 kinds of production policies.
Furthermore, the inventory holding cost is 2 per unit of inventory per period through this
study. The total costs of all production policies can be computed through the formulation (1),
and the results are represented as the total costs TC divided by the optimum solutions TC”,
TC/TC". Inthe Fig. 1, the value of TC/TC in terms of percentage are plotted with respect to
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the number of set-ups (SN), wherein the set up cost is equal to 300. The best and worst
solutions of every possible set-ups are plotted visibly both as minimum total cost curve and
maximum total cost curve in the Fig. 1.

In order to recognize the scattered characteristics for all feasible solutions, this study
inquires into set-up costs with 100 and 600 instead of 300 only for the initial example. The
relations between TC/TC™ and SN while the setup costs equal constants 100 and 600 are
obviously shown in the Fig. 2 and the Fig. 3, respectively.
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Fig. 2 Solutions Scatteration of All Production Policies with S; = 100
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Fig. 3 Solutions Scatteration of All Production Policies with S; = 600

From figures 1 to 3 the optimum SN of TC™ will switch to right-hand side as the set-up
cost decreases. The numbers of solutions within certain ranges of TC/TC  are indicated in
Table 2. The relationship between feasible solutions and each SN consists of a fixed set {1, 11,
55, 165, 330, 462, 462, 330, 165, 55, 11, 1}. In the event, the widths of the feasible solutions
will extend and the amount of the feasible solutions will increase when TC/TC” rises. The
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optimal solution is located at SN=5, SN=7 and SN=10 when the set-up cost with 600, 300,
and 100. The result of calculation fits the aforesaid presentation that the optimum SN of TC
will switch to right-hand side as the set-up cost decreases.

Table 2 Characteristics of Solutions Scatteration between TC/TC* and SN

e .S‘_N 1 2 3 4 5 [ ] T ] > L] n 1 Total
T'ﬁﬂ'ﬁ* - - 1 11 55 las 330 462 462 330 165 55 11 1 204E 10084
Set-up Cost = 100 ;Holding Cost = 2
1.00-1.05 - - - - - - 1 5 ' 3 16 e
1.05-1.10 - - - - - 1 Q 11 2 - 30 146
1.10-1.20 - - - - 3 12 T 40 12 3 - a0 439
1.20-1.30 - - - 1 15 A5 115 A7 24 2 - ad 1313
1.30-2.00 - - a8 159 334 355 125 52 - 1 - 114 Sd488
2.00-3.00 - 21 101 155 103 32 3 - - - - 420 r0s1
3.00-4.00 4 26 31 14 2 - - - - - - m 376
3.00-4 .50 2 2 3 1 - - - - - - - & 03
Set-up Cost = 300 ;Holding Cost = 2
1.00-1.05 - - - 1 6 12" 5 1 - - - s 122
1.05-1.10 - - - 4 16 a9 31 Q 1 - - a0 439
1.10-1.20 - - K o o4 140 122 24 31 5 - 518 X5
1.20-1.30 - - 12 56 112 121 o4 54 a3 ] 1 478 I3M
1.zZ0-2.00 - a5 117 224 a2 159 3] 17 1 - - 230 4007
2.00-3.00 T 25 33 14 [} 1 - - - - - ] 430
2.00-4.00 K] 4 - - - - - - - - & 03
3.00-4 .50 1 - - - - - - - - - - * o1n
Set-up Cost = 800 ,Holding Cast = 2
1.00-1.05 - - - 4" 1 - - - - - - 5 014
1.05-1.10 - - 6 4 17 - - - - - - 37 181
1.10-1.20 - 3 1® 68 e 93 11 — = = = | 33 147
1.20-1.20 - K] am T4 143 1a7 159 29 - - - 624 304N
1.zZ0-2.00 ] 41 105 16g 191 132 1a0 136G 55 11 10 5161
2.00-3.00 4 g 5 2 1 - - - - - - o LIt
3.00-4.00 1 - - - - - - - - - - 3 o1
3.00-4 .50 - - - - - - - - - - - L] LIgiLI}

In addition, the densities of the feasible solutions are taken on a tendency towards tight
squeeze. Within the widths of SN and under the constant TC/TC”, the densities denote the
feasible solutions divide by widths of SN and center around the optimum TC". As S; = 100, H;
= 2, and TC/TC™ = 1.05, the set of densities is {6/1, (6+5+3)/3, (6+5+3+1+1)/5}. The
densities of the feasible solutions will diminish when the widths of SN increases and they will
remove as well as the optimum SN of minimum TC/TC". The density characteristics of all the
solutions in the DLS model reveal a tendency towards tight squeeze.
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5. The Comparisons of Heuristics Algorithms

In this section, some algorithms that include W-W, S-M, PPB, are used to reflect the
sensitivity interval in the DLS model. The sensitivity interval of DLS model in this study
could be treated as the range between the calculating results TC/TC” of the feasible solutions
and the optimum SN of minimum TC/TC". Several arbitrary patterns that under the total
demand 1200 are used to reflect the sensitivity of the algorithms in the DLS model. Table 3
shows the results of arbitrary demand patterns. Other than TC/TC” as the only index in
previous section, Ranking is an extra index used in Table 3. The value of Ranking indicates
the rank of a solution out of all the solutions, for example, 1/66 represents the solution is the
top rank solution within 66 dense ranking solutions. The result appears that all the
approximated solutions for each algorithm in this study are close to DLS best solutions. This
phenomenon may result from the tight squeeze density characteristics of all the solutions in
the DLS model.

Table 3 The Results of Numerical Examples

Demand Pattern {100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100}

Si = 100, Hit=2 Si= 150, Hi =2
Algorithms : : : :
SN TCTC' | Ranking SN TCTC" | Ranking
W W 12 1.000 1/53 12 1.000 ligé
S M 12 1.000 1/53 12 1.000 ligé
PPB 12 1.000 1753 12 1.000 1i6é
St = 200, Ht =2 St = 250, Hit =2
W W fia 12 1.000 1726 é 1.000 1i62
5-M é 1.000 1726 é 1.000 1i62
PPB 12 1.000 1726 é 1.000 1i62
Si = 300, Hit=2 Si = 600, Hi =2
WoW é 1.000 1141 Anf 1.000 1125
5-M é 1.000 1141 4 1.000 1125
PPB é 1.000 1ia1 é 1.000 1725
Demand Pattern {80, 110, 135, 110, 55, 55, 110, 135, 135, 110, 55, 110}
Algorithms St=ll]l],H:=2 _ St=15l],H:=2 _
SN TCTC' | Ranking SN TCTC' | Ranking
W W 12 1.000 17374 10 1.000 1576
S-M 12 1.000 17374 10 1.000 1376
PPB 12 1.000 17574 11 1014 2376
S=200,H=2 S=250,H=2
W W 10 1.000 11355 g 1.000 11331
5-M 10 1.000 17355 & 1041 131331
PPB 10 1.000 17355 g 1.000 17331
St = 300, Hit=2 St = 600, Hit = 2
W W 7 1.000 11315 5 1.000 1239
S M é 1007 2315 3 1.000 11239
PPB 7 1014 4315 5 1019 51239
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Table 3 The Results of Numerical Examples (Continue)

Demand Pattern {55, 90, 190, 20, 0, 0, 195, 55, 120, 110, 195, 100}

Si= 100, Hi =2 Si= 150, Hi=2
SN TCTC® | Ranking SN TCTC" | Ranking
WoW 10 1.000 17445 9 1.000 11431
S-M 10 1.000 17445 9 1.000 11431
PPB 10 1.000 1/445 10 1015 30431
St= 200, Ht=2 St=1250, Ht=2
WoW 67 1.000 1379 5 1.000 17403
S-M b 1.000 1379 o 1.027 217403
PPB o 1.036 1370 B 1.024 201403
St= 300, Ht=2 St=600, Ht=2
WoW 5 1.000 17399 5 1.000 17364
S-M & 1387 1131399 5 1326 1181364
PPB 7 1.061 97300 5 1.000 17364
Demand Patiern {10, 10, 15, 25, 75, 195, 270, 295, 250, 45, 0, 100
Adgosithms St=1l]l],H:=2 . St=15l],H:=2 .
SN TCTC® | Ranking SN TCTC" | Ranking
WoW : 1.000 11519 7 1.000 11516
S-M 7 1.009 31519 é 1.004 2516
PPB g 1.005 20519 7 1.020 41516
Si= 200, Hi=2 Si= 250, Hi=2
WoW & 1.000 17521 & 1.000 17517
S-M é 1.000 11521 é 1.000 11517
PPB 7 1.032 41521 7 1.045 41517
Si= 300, Hi=2 Si= 600, Hi=2
WoW & 1.000 1516 4 1.000 17522
S-M é 1.000 17516 4 1.000 17522
PPB 7 1.056 50516 5 1.002 2i522

The results obtained from four arbitrary demand patterns and six types of set-up costs

could be summarized as follows:

1)

)

©)

(4)

()

(6)

W-W, S-M, and PPB—in that relationship between TC/TC" and SN well in term of
maximum observations: TC/TC" <1.387, and most results in this study reveal TC/TC"=1.000
throughout all examples.

Ranking were sorted the place of TC/TC” which cancel the repetition value; these
algorithms are all most approximate the best rank of position.

TC/TC has a significant impact on ranking that base on the algorithms comparing
through the same demand patterns and type of set-up cost.

The SN of the algorithms is close to the SN of DLS best solutions, and the SN reflects
the sensitivity interval when the set-up costs adjust through the algorithms comparing.

If n-period demands are average and similar in the patterns, like pattern 1, the calculating
results of the algorithms will present no diversity of TC/TC".

The result of TC/TC” is analogous with the analysis from Silver and Meal’s article, and
the total costs of all algorithms are close to DLS best solutions.
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The various algorithms reflect the limited sensitivity interval not only single example
that include the discussion about original case , but also the arbitrary patterns and the six type
of set-up cost by the numerical results. The results can be examined and observed through
more comprehensive and arbitrary patterns in the future.

6. Conclusions
In this study we have presented a binary formulation framework to embody in dynamic

lot-size problem, the TC/TC™ of all production policies can be calculated through a simple
formulation. The selecting replenishments quantities under conditions of deterministic
demand patterns where replenishments are restricted to the beginnings of discrete periods are
examined and investigated through this study. Furthermore, we use several indices and
various algorithms to recognize the sensitivity analysis between TC/TC™ and SN. The results
of numerical examples reveal the major findings of this study are as follows:

(1) The various algorithms reflect the limited sensitivity interval through all examples.
Moreover, the approximate value of rounding DSL best solution is perfectly acceptable.

(2) The SN of the algorithms reflects the sensitivity interval when the set-up costs adjust
through the algorithms comparing. The experimental results also reveal the DLS
minimum total costs curve is relatively flat near the best solution, especially the right
side of the best one.

(3) The calculating results of TC/TC” are analogous to past articles and the total costs of all
algorithms are close to DLS best solutions. Moreover, TC/TC™ has a significant impact
on ranking through all examples.

(4) The calculating results of algorithms and the characteristic of scattered solutions in the
widths of SN reveal a tight squeeze for densities of solutions. The tight squeeze for
densities of solutions will follow the shift of the optimum SN.

The significant implication in this study is DLS model has the sensitivity interval to
reflect the calculating results of algorithms. The binary formulation framework is useful to
represent the sensitivity interval in DLS model. Moreover, it could assist managers to
examine the suitable range TC/TC™ and the calculating results of heuristic algorithms. If the
calculating results of heuristic algorithms are within the range, the heuristic algorithms are
appropriate for the operation situation. The analysis is directed toward improving the
manager’s ability to make better decisions with regard to the total costs in choosing an
appropriate algorithm for a requirements planning system.
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